Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May;48(5):1362-1370.
doi: 10.1007/s00259-020-05080-7. Epub 2020 Oct 24.

Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network

Affiliations

Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network

Paul Blanc-Durand et al. Eur J Nucl Med Mol Imaging. 2021 May.

Abstract

Purpose: Lymphoma lesion detection and segmentation on whole-body FDG-PET/CT are a challenging task because of the diversity of involved nodes, organs or physiological uptakes. We sought to investigate the performances of a three-dimensional (3D) convolutional neural network (CNN) to automatically segment total metabolic tumour volume (TMTV) in large datasets of patients with diffuse large B cell lymphoma (DLBCL).

Methods: The dataset contained pre-therapy FDG-PET/CT from 733 DLBCL patients of 2 prospective LYmphoma Study Association (LYSA) trials. The first cohort (n = 639) was used for training using a 5-fold cross validation scheme. The second cohort (n = 94) was used for external validation of TMTV predictions. Ground truth masks were manually obtained after a 41% SUVmax adaptive thresholding of lymphoma lesions. A 3D U-net architecture with 2 input channels for PET and CT was trained on patches randomly sampled within PET/CTs with a summed cross entropy and Dice similarity coefficient (DSC) loss. Segmentation performance was assessed by the DSC and Jaccard coefficients. Finally, TMTV predictions were validated on the second independent cohort.

Results: Mean DSC and Jaccard coefficients (± standard deviation) in the validations set were 0.73 ± 0.20 and 0.68 ± 0.21, respectively. An underestimation of mean TMTV by - 12 mL (2.8%) ± 263 was found in the validation sets of the first cohort (P = 0.27). In the second cohort, an underestimation of mean TMTV by - 116 mL (20.8%) ± 425 was statistically significant (P = 0.01).

Conclusion: Our CNN is a promising tool for automatic detection and segmentation of lymphoma lesions, despite slight underestimation of TMTV. The fully automatic and open-source features of this CNN will allow to increase both dissemination in routine practice and reproducibility of TMTV assessment in lymphoma patients.

Trial registration: ClinicalTrials.gov NCT00498043 NCT01659099.

Keywords: Convolutional neural network; Deep learning; Lymphoma; Positron emission tomography; Segmentation; Total metabolic tumour volume; U-net.

PubMed Disclaimer

References

    1. Kanoun S, Rossi C, Berriolo-Riedinger A, Dygai-Cochet I, Cochet A, Humbert O, et al. Baseline metabolic tumour volume is an independent prognostic factor in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2014;41:1735–43. https://doi.org/10.1007/s00259-014-2783-x . - DOI - PubMed
    1. Sasanelli M, Meignan M, Haioun C, Berriolo-Riedinger A, Casasnovas RO, Biggi A, et al. Pretherapy metabolic tumour volume is an independent predictor of outcome in patients with diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2014;41:2017–22. https://doi.org/10.1007/s00259-014-2822-7 . - DOI - PubMed
    1. Ceriani L, Martelli M, Zinzani PL, Ferreri AJ, Botto B, Stelitano C, et al. Utility of baseline 18FDG-PET/CT functional parameters in defining prognosis of primary mediastinal (thymic) large B-cell lymphoma. Blood. 2015;126:950–6. https://doi.org/10.1182/blood-2014-12-616474 . - DOI - PubMed
    1. Meignan M, Cottereau AS, Versari A, Chartier L, Dupuis J, Boussetta S, et al. Baseline metabolic tumor volume predicts outcome in high-tumor-burden follicular lymphoma: a pooled analysis of three multicenter studies. J Clin Oncol. 2016;34:3618–26. https://doi.org/10.1200/JCO.2016.66.9440 . - DOI - PubMed
    1. Albano D, Bosio G, Bianchetti N, Pagani C, Re A, Tucci A, et al. Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in mantle cell lymphoma. Ann Nucl Med. 2019;33:449–58. https://doi.org/10.1007/s12149-019-01354-9 . - DOI - PubMed

Publication types

MeSH terms

Substances

Associated data

LinkOut - more resources