Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct 27;223(Pt 20):jeb161828.
doi: 10.1242/jeb.161828.

Individual variation and the biomechanics of maneuvering flight in hummingbirds

Affiliations
Review

Individual variation and the biomechanics of maneuvering flight in hummingbirds

R Dakin et al. J Exp Biol. .

Abstract

An animal's maneuverability will determine the outcome of many of its most important interactions. A common approach to studying maneuverability is to force the animal to perform a specific maneuver or to try to elicit maximal performance. Recently, the availability of wider-field tracking technology has allowed for high-throughput measurements of voluntary behavior, an approach that produces large volumes of data. Here, we show how these data allow for measures of inter-individual variation that are necessary to evaluate how performance depends on other traits, both within and among species. We use simulated data to illustrate best practices when sampling a large number of voluntary maneuvers. Our results show how the sample average can be the best measure of inter-individual variation, whereas the sample maximum is neither repeatable nor a useful metric of the true variation among individuals. Our studies with flying hummingbirds reveal that their maneuvers fall into three major categories: simple translations, simple rotations and complex turns. Simple maneuvers are largely governed by distinct morphological and/or physiological traits. Complex turns involve both translations and rotations, and are more subject to inter-individual differences that are not explained by morphology. This three-part framework suggests that different wingbeat kinematics can be used to maximize specific aspects of maneuverability. Thus, a broad explanatory framework has emerged for interpreting hummingbird maneuverability. This framework is general enough to be applied to other types of locomotion, and informative enough to explain mechanisms of maneuverability that could be applied to both animals and bio-inspired robots.

Keywords: Behavior; Maneuverability; Repeatability; Statistics; Wingbeat kinematics.

PubMed Disclaimer

Conflict of interest statement

Competing interestsThe authors declare no competing or financial interests.

Publication types

LinkOut - more resources