Nutrient sensing in Leishmania: Flagellum and cytosol
- PMID: 33112443
- PMCID: PMC8087152
- DOI: 10.1111/mmi.14635
Nutrient sensing in Leishmania: Flagellum and cytosol
Abstract
Parasites are by definition organisms that utilize resources from a host to support their existence, thus, promoting their ability to establish long-term infections and disease. Hence, sensing and acquiring nutrients for which the parasite and host compete is central to the parasitic mode of existence. Leishmania are flagellated kinetoplastid parasites that parasitize phagocytic cells, principally macrophages, of vertebrate hosts and the alimentary tract of sand fly vectors. Because nutritional supplies vary over time within both these hosts and are often restricted in availability, these parasites must sense a plethora of nutrients and respond accordingly. The flagellum has been recognized as an "antenna" that plays a core role in sensing environmental conditions, and various flagellar proteins have been implicated in sensing roles. In addition, these parasites exhibit non-flagellar intracellular mechanisms of nutrient sensing, several of which have been explored. Nonetheless, mechanistic details of these sensory pathways are still sparse and represent a challenging frontier for further experimental exploration.
© 2020 John Wiley & Sons Ltd.
Conflict of interest statement
Conflict of interest
The authors declare no financial conflict of interest.
Figures



Similar articles
-
Discovery of essential kinetoplastid-insect adhesion proteins and their function in Leishmania-sand fly interactions.Nat Commun. 2024 Aug 13;15(1):6960. doi: 10.1038/s41467-024-51291-z. Nat Commun. 2024. PMID: 39138209 Free PMC article.
-
Disruption of Leishmania flagellum attachment zone architecture causes flagellum loss.Mol Microbiol. 2024 Jan;121(1):53-68. doi: 10.1111/mmi.15199. Epub 2023 Nov 27. Mol Microbiol. 2024. PMID: 38010644 Free PMC article.
-
Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections.PLoS Pathog. 2019 Jun 26;15(6):e1007828. doi: 10.1371/journal.ppat.1007828. eCollection 2019 Jun. PLoS Pathog. 2019. PMID: 31242261 Free PMC article.
-
Touching the Surface: Diverse Roles for the Flagellar Membrane in Kinetoplastid Parasites.Microbiol Mol Biol Rev. 2020 Apr 1;84(2):e00079-19. doi: 10.1128/MMBR.00079-19. Print 2020 May 20. Microbiol Mol Biol Rev. 2020. PMID: 32238446 Free PMC article. Review.
-
Metabolic pathways required for the intracellular survival of Leishmania.Annu Rev Microbiol. 2011;65:543-61. doi: 10.1146/annurev-micro-090110-102913. Annu Rev Microbiol. 2011. PMID: 21721937 Review.
Cited by
-
Quercetin as a Promising Antiprotozoan Phytochemical: Current Knowledge and Future Research Avenues.Biomed Res Int. 2024 Feb 29;2024:7632408. doi: 10.1155/2024/7632408. eCollection 2024. Biomed Res Int. 2024. PMID: 38456097 Free PMC article. Review.
-
1,2,4-Oxadiazole Derivatives: Physicochemical Properties, Antileishmanial Potential, Docking and Molecular Dynamic Simulations of Leishmania infantum Target Proteins.Molecules. 2024 Sep 30;29(19):4654. doi: 10.3390/molecules29194654. Molecules. 2024. PMID: 39407583 Free PMC article.
-
Proximity-Dependent Biotinylation and Identification of Flagellar Proteins in Trypanosoma cruzi.mSphere. 2023 Jun 22;8(3):e0008823. doi: 10.1128/msphere.00088-23. Epub 2023 Apr 5. mSphere. 2023. PMID: 37017578 Free PMC article.
-
Next-Generation Leishmanization: Revisiting Molecular Targets for Selecting Genetically Engineered Live-Attenuated Leishmania.Microorganisms. 2023 Apr 16;11(4):1043. doi: 10.3390/microorganisms11041043. Microorganisms. 2023. PMID: 37110466 Free PMC article. Review.
-
Metabolic flexibility in Trypanosoma cruzi amastigotes: implications for persistence and drug sensitivity.Curr Opin Microbiol. 2021 Oct;63:244-249. doi: 10.1016/j.mib.2021.07.017. Epub 2021 Aug 26. Curr Opin Microbiol. 2021. PMID: 34455305 Free PMC article. Review.
References
-
- Alcolea PJ, Alonso A, Baugh L, Paisie C, Ramasamy G, Sekar A, Sur A, Jimenez M, Molina R, Larraga V, and Myler PJ (2018) RNA-seq analysis reveals differences in transcript abundance between cultured and sand fly-derived Leishmania infantum promastigotes. Parasitol Int 67: 476–480. - PubMed
-
- Beneke T, Demay F, Hookway E, Ashman N, Jeffery H, Smith J, Valli J, Becvar T, Myskova J, Lestinova T, Shafiq S, Sadlova J, Volf P, Wheeler RJ, and Gluenz E (2019) Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog 15: e1007828. - PMC - PubMed
-
- Bhattacharya A, Biswas A, and Das PK (2009) Role of a differentially expressed cAMP phosphodiesterase in regulating the induction of resistance against oxidative damage in Leishmania donovani. Free Radic Biol Med 47: 1494–1506. - PubMed
-
- Cabello-Donayre M, Malagarie-Cazenave S, Campos-Salinas J, Galvez FJ, Rodriguez-Martinez A, Pineda-Molina E, Orrego LM, Martinez-Garcia M, Sanchez-Canete MP, Estevez AM, and Perez-Victoria JM (2016) Trypanosomatid parasites rescue heme from endocytosed hemoglobin through lysosomal HRG transporters. Mol Microbiol 101: 895–908. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical