Archaeal transcription
- PMID: 33112729
- PMCID: PMC7714419
- DOI: 10.1080/21541264.2020.1838865
Archaeal transcription
Abstract
Increasingly sophisticated biochemical and genetic techniques are unraveling the regulatory factors and mechanisms that control gene expression in the Archaea. While some similarities in regulatory strategies are universal, archaeal-specific regulatory strategies are emerging to complement a complex patchwork of shared archaeal-bacterial and archaeal-eukaryotic regulatory mechanisms employed in the archaeal domain. The prokaryotic archaea encode core transcription components with homology to the eukaryotic transcription apparatus and also share a simplified eukaryotic-like initiation mechanism, but also deploy tactics common to bacterial systems to regulate promoter usage and influence elongation-termination decisions. We review the recently established complete archaeal transcription cycle, highlight recent findings of the archaeal transcription community and detail the expanding post-initiation regulation imposed on archaeal transcription.
Keywords: Archaea; Eta; FttA; RNA polymerase; Spt4/5; TFS; archaeal histones; transcription.
Conflict of interest statement
The authors declare no competing interests.
Similar articles
-
Transcription Regulation in Archaea.J Bacteriol. 2016 Jun 27;198(14):1906-1917. doi: 10.1128/JB.00255-16. Print 2016 Jul 15. J Bacteriol. 2016. PMID: 27137495 Free PMC article. Review.
-
Structural basis of archaeal FttA-dependent transcription termination.bioRxiv [Preprint]. 2023 Aug 10:2023.08.09.552649. doi: 10.1101/2023.08.09.552649. bioRxiv. 2023. Update in: Nature. 2024 Nov;635(8037):229-236. doi: 10.1038/s41586-024-07979-9. PMID: 37609354 Free PMC article. Updated. Preprint.
-
DNA-binding proteins and evolution of transcription regulation in the archaea.Nucleic Acids Res. 1999 Dec 1;27(23):4658-70. doi: 10.1093/nar/27.23.4658. Nucleic Acids Res. 1999. PMID: 10556324 Free PMC article.
-
Structural basis of archaeal FttA-dependent transcription termination.Nature. 2024 Nov;635(8037):229-236. doi: 10.1038/s41586-024-07979-9. Epub 2024 Sep 25. Nature. 2024. PMID: 39322680 Free PMC article.
-
Archaeal chromatin and transcription.Mol Microbiol. 2003 May;48(3):587-98. doi: 10.1046/j.1365-2958.2003.03439.x. Mol Microbiol. 2003. PMID: 12694606 Review.
Cited by
-
Comparative genomics of DNA-binding transcription factors in archaeal and bacterial organisms.PLoS One. 2021 Jul 2;16(7):e0254025. doi: 10.1371/journal.pone.0254025. eCollection 2021. PLoS One. 2021. PMID: 34214112 Free PMC article.
-
High hydrostatic pressure promotes gene transcription via a cystathionine-β-synthase domain-containing protein in the hyperthermophilic archaeon Pyrococcus yayanosii.Nucleic Acids Res. 2025 Jan 7;53(1):gkae1289. doi: 10.1093/nar/gkae1289. Nucleic Acids Res. 2025. PMID: 39777464 Free PMC article.
-
TrmB Family Transcription Factor as a Thiol-Based Regulator of Oxidative Stress Response.mBio. 2022 Aug 30;13(4):e0063322. doi: 10.1128/mbio.00633-22. Epub 2022 Jul 20. mBio. 2022. PMID: 35856564 Free PMC article.
-
Archaeal histone-based chromatin structures regulate transcription elongation rates.Commun Biol. 2024 Feb 27;7(1):236. doi: 10.1038/s42003-024-05928-w. Commun Biol. 2024. PMID: 38413771 Free PMC article.
-
Putative nucleotide-based second messengers in archaea.Microlife. 2023 Jun 5;4:uqad027. doi: 10.1093/femsml/uqad027. eCollection 2023. Microlife. 2023. PMID: 37305433 Free PMC article. Review.
References
-
- DeLong EF, Pace NR.. Environmental diversity of bacteria and archaea. Syst Biol. 2001;50:470–478. - PubMed
-
- Berg IA, Kockelkorn D, Ramos-Vera WH, et al. Autotrophic carbon fixation in archaea. Nature Rev Microbiol. 2010;8:447–460. - PubMed
-
- Castelle CJ, Wrighton K, Thomas B, et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 2015;25:690–701. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources