Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 15;9(2):55.
doi: 10.1167/tvst.9.2.55. eCollection 2020 Oct.

Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice

Affiliations

Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice

Anna S Mursch-Edlmayr et al. Transl Vis Sci Technol. .

Erratum in

Abstract

Purpose: This concise review aims to explore the potential for the clinical implementation of artificial intelligence (AI) strategies for detecting glaucoma and monitoring glaucoma progression.

Methods: Nonsystematic literature review using the search combinations "Artificial Intelligence," "Deep Learning," "Machine Learning," "Neural Networks," "Bayesian Networks," "Glaucoma Diagnosis," and "Glaucoma Progression." Information on sensitivity and specificity regarding glaucoma diagnosis and progression analysis as well as methodological details were extracted.

Results: Numerous AI strategies provide promising levels of specificity and sensitivity for structural (e.g. optical coherence tomography [OCT] imaging, fundus photography) and functional (visual field [VF] testing) test modalities used for the detection of glaucoma. Area under receiver operating curve (AROC) values of > 0.90 were achieved with every modality. Combining structural and functional inputs has been shown to even more improve the diagnostic ability. Regarding glaucoma progression, AI strategies can detect progression earlier than conventional methods or potentially from one single VF test.

Conclusions: AI algorithms applied to fundus photographs for screening purposes may provide good results using a simple and widely accessible test. However, for patients who are likely to have glaucoma more sophisticated methods should be used including data from OCT and perimetry. Outputs may serve as an adjunct to assist clinical decision making, whereas also enhancing the efficiency, productivity, and quality of the delivery of glaucoma care. Patients with diagnosed glaucoma may benefit from future algorithms to evaluate their risk of progression. Challenges are yet to be overcome, including the external validity of AI strategies, a move from a "black box" toward "explainable AI," and likely regulatory hurdles. However, it is clear that AI can enhance the role of specialist clinicians and will inevitably shape the future of the delivery of glaucoma care to the next generation.

Translational relevance: The promising levels of diagnostic accuracy reported by AI strategies across the modalities used in clinical practice for glaucoma detection can pave the way for the development of reliable models appropriate for their translation into clinical practice. Future incorporation of AI into healthcare models may help address the current limitations of access and timely management of patients with glaucoma across the world.

Keywords: artificial intelligence; glaucoma; machine learning.

PubMed Disclaimer

Conflict of interest statement

Disclosure: A.S. Mursch-Edlmayr, None; W.S. Ng, None; A. Diniz-Filho, None; D.C. Sousa, None; L. Arnold, None; M.B. Schlenker, None; K. Duenas-Angeles, None; P.A. Keane: Heidelberg Engineering (F), Topcon (F), Carl Zeiss Meditec (F), Haag-Streit (F), Allergan (F), Novartis (F, S), Bayer (F, S), DeepMind (C), Optos (C); J. Crowston, Allergan (C); H. Jayaram, Allergan (C)

Figures

Figure.
Figure.
Theoretical glaucoma service workflow incorporating artificial intelligence algorithms.

Similar articles

Cited by

References

    1. Mariotti SP. Global Data on Visual Impairment 2010. Geneva, Austria: World Health Organisation; 2010.
    1. Pascolini D, Mariotti SP.. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012; 96: 614–618. - PubMed
    1. Quigley HA, Vitale S.. Models of open-angle glaucoma prevalence and incidence in the United States. Invest Ophthalmol Vis Sci. 1997; 38: 83–91. - PubMed
    1. Rahman F, Zekite A, Bunce C, Jayaram H, Flanagan D. Recent trends in vision impairment certifications in England and Wales. Eye (Lond). 2020; 34(7): 1271–1278. - PMC - PubMed
    1. de Voogd S, Ikram MK, Wolfs RC, Jansonius NM, Hofman A, de Jong PT. Incidence of open-angle glaucoma in a general elderly population: the Rotterdam Study. Ophthalmology. 2005; 112: 1487–1493. - PubMed

Publication types