Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct 30;9(1):40.
doi: 10.1186/s40035-020-00219-w.

Maintaining the balance of TDP-43, mitochondria, and autophagy: a promising therapeutic strategy for neurodegenerative diseases

Affiliations
Review

Maintaining the balance of TDP-43, mitochondria, and autophagy: a promising therapeutic strategy for neurodegenerative diseases

Chunhui Huang et al. Transl Neurodegener. .

Abstract

Mitochondria are the energy center of cell operations and are involved in physiological functions and maintenance of metabolic balance and homeostasis in the body. Alterations of mitochondrial function are associated with a variety of degenerative and acute diseases. As mitochondria age in cells, they gradually become inefficient and potentially toxic. Acute injury can trigger the permeability of mitochondrial membranes, which can lead to apoptosis or necrosis. Transactive response DNA-binding protein 43 kDa (TDP-43) is a protein widely present in cells. It can bind to RNA, regulate a variety of RNA processes, and play a role in the formation of multi-protein/RNA complexes. Thus, the normal physiological functions of TDP-43 are particularly important for cell survival. Normal TDP-43 is located in various subcellular structures including mitochondria, mitochondrial-associated membrane, RNA particles and stress granules to regulate the endoplasmic reticulum-mitochondrial binding, mitochondrial protein translation, and mRNA transport and translation. Importantly, TDP-43 is associated with a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia and Alzheimer's disease, which are characterized by abnormal phosphorylation, ubiquitination, lysis or nuclear depletion of TDP-43 in neurons and glial cells. Although the pathogenesis of TDP-43 proteinopathy remains unknown, the presence of pathological TDP-43 inside or outside of mitochondria and the functional involvement of TDP-43 in the regulation of mitochondrial morphology, transport, and function suggest that mitochondria are associated with TDP-43-related diseases. Autophagy is a basic physiological process that maintains the homeostasis of cells, including targeted clearance of abnormally aggregated proteins and damaged organelles in the cytoplasm; therefore, it is considered protective against neurodegenerative diseases. However, the combination of abnormal TDP-43 aggregation, mitochondrial dysfunction, and insufficient autophagy can lead to a variety of aging-related pathologies. In this review, we describe the current knowledge on the associations of mitochondria with TDP-43 and the role of autophagy in the clearance of abnormally aggregated TDP-43 and dysfunctional mitochondria. Finally, we discuss a novel approach for neurodegenerative treatment based on the knowledge.

Keywords: Autophagy/mitophagy; Mitochondria; Neurodegeneration; TDP-43.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The balance of TDP-43, mitochondria, and autophagy/mitophagy. In the healthy state, TDP-43 promotes mitochondrial biogenesis, mitochondria provide energy for the process of autophagy, and autophagy clears abnormal TDP-43 and damaged mitochondria. In neurodegenerative diseases, TDP-43 aggregates abnormally, impairing mitochondria and autophagy. Due to the autophagy dysfunction, the accumulated TDP-43 aggregates and damaged mitochondria cannot be cleaned up normally, leading to neuronal death.
Fig. 2
Fig. 2
The structure of TDP-43. TDP-43 protein contains a nuclear localization sequence (NLS), two RNA recognition motifs (RRMs), a nuclear export sequence (NES), and a glycine-rich domain.

Similar articles

Cited by

References

    1. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–795. doi: 10.1038/nature05292. - DOI - PubMed
    1. Soto C, Pritzkow S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci. 2018;21:1332–1340. doi: 10.1038/s41593-018-0235-9. - DOI - PMC - PubMed
    1. Spires-Jones TL, Attems J, Thal DR. Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol. 2017;134:187–205. doi: 10.1007/s00401-017-1709-7. - DOI - PMC - PubMed
    1. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–133. doi: 10.1126/science.1134108. - DOI - PubMed
    1. Gao J, Wang L, Yan T, Perry G, Wang X. TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Mol Cell Neurosci. 2019;100:103396. doi: 10.1016/j.mcn.2019.103396. - DOI - PMC - PubMed

Publication types

MeSH terms