Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May:270:128613.
doi: 10.1016/j.chemosphere.2020.128613. Epub 2020 Oct 13.

Algal density affects the influences of polyethylene microplastics on the freshwater rotifer Brachionus calyciflorus

Affiliations

Algal density affects the influences of polyethylene microplastics on the freshwater rotifer Brachionus calyciflorus

Ying-Hao Xue et al. Chemosphere. 2021 May.

Abstract

Most previous researches focused on the toxicity of polystyrene microplastics (MPs) to marine organisms, but less on polyethylene MPs and freshwater zooplanktons. The present study aims to elucidate the toxicity of polyethylene (PE) MPs (diameter = 10-22 μm) to the typical freshwater rotifer Brachionus calyciflorus. Firstly, fluorescent microscope observation showed that rotifers could ingest PE MPs and accumulate them in their digestive tracts. Life-table experiments revealed that exposure to 0.5 × 103, 2.5 × 103, and 1.25 × 104 particles/mL PE MPs significantly reduced net reproductive rate and intrinsic rate of pollution increase of rotifers under algal densities (Scenedesmus obliquus) of 0.1 × 106, and 0.5 × 106 cells/mL, but no significant effects were observed under 2.5 × 106 cells/mL algal density. These results showed that PE MPs suppressed the reproduction of rotifer and this negative effect could be alleviated by increasing food supply. The swimming linear speed of rotifers significantly decreased with increasing MP concentrations. The activities of superoxide dismutase and Na+-K+-ATPase significantly decreased in treatments with high concentration of PE MPs under 0.1 × 106 cells/mL algal density, but did not change significantly in MP treatments under 0.5 × 106 and 2.5 × 106 cells/mL, compared to the control. Glutathione peroxidase activity significantly increased in treatments with 1.25 × 104 particles/mL and 2.5 × 103 particles/mL under 0.1 × 106 and 0.5 × 106 cells/mL algal density, respectively, but did not change significantly in all MP treatments under 2.5 × 106 cells/mL. Exposure to PE MPs might lower the gathering capacity of algae, induce oxidative stress, trigger cell membrane damages and disturb energy metabolism in rotifers, which can explain the PE MPs toxicity to rotifer reproduction.

Keywords: Antioxidant; Life-history; Microplastic; Rotifer; Swimming speed.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources