Simplifying the Assessment of Measurement Invariance over Multiple Background Variables: Using Regularized Moderated Nonlinear Factor Analysis to Detect Differential Item Functioning
- PMID: 33132679
- PMCID: PMC7596881
- DOI: 10.1080/10705511.2019.1642754
Simplifying the Assessment of Measurement Invariance over Multiple Background Variables: Using Regularized Moderated Nonlinear Factor Analysis to Detect Differential Item Functioning
Abstract
Determining whether measures are equally valid for all individuals is a core component of psychometric analysis. Traditionally, the evaluation of measurement invariance (MI) involves comparing independent groups defined by a single categorical covariate (e.g., men and women) to determine if there are any items that display differential item functioning (DIF). More recently, Moderated Nonlinear Factor Analysis (MNLFA) has been advanced as an approach for evaluating MI/DIF simultaneously over multiple background variables, categorical and continuous. Unfortunately, conventional procedures for detecting DIF do not scale well to the more complex MNLFA. The current manuscript therefore proposes a regularization approach to MNLFA estimation that penalizes the likelihood for DIF parameters (i.e., rewarding sparse DIF). This procedure avoids the pitfalls of sequential inference tests, is automated for end users, and is shown to perform well in both a small-scale simulation and an empirical validation study.
Figures




Similar articles
-
Comprehensive measurement invariance of alcohol outcome expectancies among adolescents using regularized moderated nonlinear factor analysis.Addict Behav. 2022 Jan;124:107088. doi: 10.1016/j.addbeh.2021.107088. Epub 2021 Aug 17. Addict Behav. 2022. PMID: 34487979 Free PMC article.
-
DIF Statistical Inference Without Knowing Anchoring Items.Psychometrika. 2023 Dec;88(4):1097-1122. doi: 10.1007/s11336-023-09930-9. Epub 2023 Aug 7. Psychometrika. 2023. PMID: 37550561 Free PMC article.
-
A more general model for testing measurement invariance and differential item functioning.Psychol Methods. 2017 Sep;22(3):507-526. doi: 10.1037/met0000077. Epub 2016 Jun 6. Psychol Methods. 2017. PMID: 27266798 Free PMC article.
-
Overview of quantitative measurement methods. Equivalence, invariance, and differential item functioning in health applications.Med Care. 2006 Nov;44(11 Suppl 3):S39-49. doi: 10.1097/01.mlr.0000245452.48613.45. Med Care. 2006. PMID: 17060834 Review.
-
Different approaches to differential item functioning in health applications. Advantages, disadvantages and some neglected topics.Med Care. 2006 Nov;44(11 Suppl 3):S152-70. doi: 10.1097/01.mlr.0000245142.74628.ab. Med Care. 2006. PMID: 17060822 Review.
Cited by
-
Using Interpretable Machine Learning for Differential Item Functioning Detection in Psychometric Tests.Appl Psychol Meas. 2024 Jul;48(4-5):167-186. doi: 10.1177/01466216241238744. Epub 2024 Mar 11. Appl Psychol Meas. 2024. PMID: 39055539 Free PMC article.
-
Can severity of substance use be measured across drug classes? Estimating differential item functioning by drug class in two general measures of substance use severity.Drug Alcohol Depend. 2023 Sep 1;250:110877. doi: 10.1016/j.drugalcdep.2023.110877. Epub 2023 Jul 5. Drug Alcohol Depend. 2023. PMID: 37441960 Free PMC article.
-
Empathy and Autism: Establishing the Structure and Different Manifestations of Empathy in Autistic Individuals Using the Perth Empathy Scale.J Autism Dev Disord. 2024 Aug 8. doi: 10.1007/s10803-024-06491-3. Online ahead of print. J Autism Dev Disord. 2024. PMID: 39115741
-
Single- and Multiple-Group Penalized Factor Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Parameter Selection.Psychometrika. 2021 Mar;86(1):65-95. doi: 10.1007/s11336-021-09751-8. Epub 2021 Mar 26. Psychometrika. 2021. PMID: 33768403 Free PMC article.
-
Modelling nonlinear moderation effects with local structural equation modelling (LSEM): A non-technical introduction.Int J Psychol. 2025 Feb;60(1):e13259. doi: 10.1002/ijop.13259. Epub 2024 Oct 19. Int J Psychol. 2025. PMID: 39425575 Free PMC article.
References
-
- Benjamini Y & Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289–300.
-
- Brandt H, Cambria J & Kelava A (in press). An adaptive Bayesian lasso approach with spike-and-slab priors to identify multiple linear and nonlinear effects in structural equation models. Structural Equation Modeling: A Multidisciplinary Journal.
-
- Byrne BM, Shavelson RJ, & Muthén B (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105, 456–466.
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources