trans-Selective and Switchable Arene Hydrogenation of Phenol Derivatives
- PMID: 33133752
- PMCID: PMC7594304
- DOI: 10.1021/acscatal.0c03423
trans-Selective and Switchable Arene Hydrogenation of Phenol Derivatives
Abstract
A trans-selective arene hydrogenation of abundant phenol derivatives catalyzed by a commercially available heterogeneous palladium catalyst is reported. The described method tolerates a variety of functional groups and provides access to a broad scope of trans-configurated cyclohexanols as potential building blocks for life sciences and beyond in a one-step procedure. The transformation is strategically important because arene hydrogenation preferentially delivers the opposite cis-isomers. The diastereoselectivity of the phenol hydrogenation can be switched to the cis-isomers by employing rhodium-based catalysts. Moreover, a protocol for the chemoselective hydrogenation of phenols to cyclohexanones was developed.
Conflict of interest statement
The authors declare no competing financial interest.
Figures






References
-
-
For reviews on arene hydrogenation, see:
- Wiesenfeldt M. P.; Nairoukh Z.; Dalton T.; Glorius F. Selective Arene Hydrogenation for Direct Access to Saturated Carbo- and Heterocycles. Angew. Chem., Int. Ed. 2019, 58, 10460.10.1002/anie.201814471. - DOI - PMC - PubMed
- Giustra Z. X.; Ishibashi J. S. A.; Liu S.-Y. Homogeneous Metal Catalysis for Conversion between Aromatic and Saturated Compounds. Coord. Chem. Rev. 2016, 314, 134.10.1016/j.ccr.2015.11.006. - DOI
- Gualandi A.; Savoia D. Substrate Induced Diastereoselective Hydrogenation/Reduction of Arenes and Heteroarenes. RSC Adv. 2016, 6, 18419.10.1039/C5RA23908G. - DOI
- Qi S.-C.; Wei X.-Y.; Zong Z.-M.; Wang Y.-K. Application of Supported Metallic Catalysts in Catalytic Hydrogenation of Arenes. RSC Adv. 2013, 3, 14219.10.1039/c3ra40848e. - DOI
- Gual A.; Godard C.; Castillón S.; Claver C. Soluble Transition-Metal Nanoparticles-Catalysed Hydrogenation of Arenes. Dalton Trans. 2010, 39, 11499.10.1039/c0dt00584c. - DOI - PubMed
-
Soluble Transition-Metal Nanoparticles-Catalysed Hydrogenation of Arenes. For books on arene hydrogenation, see:
- Foubelo F.; Yus M.. Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds; Mortier J., Ed.; Wiley: Hoboken, 2016; p 337.
- Bianchini C.; Meli A.; Vizza F.. The Handbook of Homogeneous Hydrogenation; de Vries J. G.; Elsevier C. J., Eds.; Wiley-VCH: Weinheim, 2006; p 455.
- Nishimura S.Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis; John Wiley & Sons: New York, 2001; p 414.
-
For selected reviews on the more general dearomatization of arenes, see:
- Wertjes W. C.; Southgate E. H.; Sarlah D. Recent Advances in Chemical Dearomatization of Nonactivated Arenes. Chem. Soc. Rev. 2018, 47, 7996.10.1039/C8CS00389K. - DOI - PubMed
- Huck C. J.; Sarlah D. Shaping Molecular Landscapes: Recent Advances, Opportunities, and Challenges in Dearomatization. Chem. 2020, 6, 1589.10.1016/j.chempr.2020.06.015. - DOI - PMC - PubMed
- You S.-L., Ed., Asymmetric Dearomatization Reactions; Wiley-VCH: Weinheim, 2016.
-
-
- Weissermel K.; Arpe H.-J.. Industrial Organic Chemistry; Wiley-VCH: Weinheim, 2008; p 337.
-
- Foppa L.; Dupont J. Benzene Partial Hydrogenation: Advances and Perspectives. Chem. Soc. Rev. 2015, 44, 1886.10.1039/C4CS00324A. - DOI - PubMed
- Nagahara H.; Ono M.; Konishi M.; Fukuoka Y. Partial Hydrogenation of Benzene to Cyclohexene. Appl. Surf. Sci. 1997, 121–122, 448.10.1016/S0169-4332(97)00325-5. - DOI
-
- Wiesenfeldt M. P.; Nairoukh Z.; Li W.; Glorius F. Hydrogenation of Fluoroarenes: Direct Access to all-cis-(Multi)fluorinated Cycloalkanes. Science 2017, 357, 908.10.1126/science.aao0270. - DOI - PubMed
- Nairoukh Z.; Wollenburg M.; Schlepphorst C.; Bergander K.; Glorius F. The Formation of all-cis-(Multi)fluorinated Piperidines by a Dearomatization–Hydrogenation Process. Nat. Chem. 2019, 11, 264.10.1038/s41557-018-0197-2. - DOI - PMC - PubMed
- Zhang X.; Ling L.; Luo M.; Zeng X. Accessing Difluoromethylated and Trifluoromethylated cis-Cycloalkanes and Saturated Heterocycles: Preferential Hydrogen Addition to the Substitution Sites for Dearomatization. Angew. Chem., Int. Ed. 2019, 58, 16785.10.1002/anie.201907457. - DOI - PubMed
- Wollenburg M.; Moock D.; Glorius F. Hydrogenation of Borylated Arenes. Angew. Chem., Int. Ed. 2019, 58, 6549.10.1002/anie.201810714. - DOI - PubMed
- Ling L.; He Y.; Zhang X.; Luo M.; Zeng X. Hydrogenation of (Hetero)aryl Boronate Esters with a Cyclic (Alkyl)(amino)carbene–Rhodium Complex: Direct Access to cis-Substituted Borylated Cycloalkanes and Saturated Heterocycles. Angew. Chem., Int. Ed. 2019, 58, 6554.10.1002/anie.201811210. - DOI - PubMed
- Wiesenfeldt M. P.; Knecht T.; Schlepphorst C.; Glorius F. Silylarene Hydrogenation: A Strategic Approach that Enables Direct Access to Versatile Silylated Saturated Carbo- and Heterocycles. Angew. Chem., Int. Ed. 2018, 57, 8297.10.1002/anie.201804124. - DOI - PubMed
- Wei Y.; Rao B.; Cong X.; Zeng X. Highly Selective Hydrogenation of Aromatic Ketones and Phenols Enabled by Cyclic (Amino)(alkyl)carbene Rhodium Complexes. J. Am. Chem. Soc. 2015, 137, 9250.10.1021/jacs.5b05868. - DOI - PubMed
-
- For reviews on enantioselective hydrogenation of (hetero)arenes, see:Zhao D.; Candish L.; Paul D.; Glorius F.. N-Heterocyclic Carbenes in Asymmetric Hydrogenation. ACS Catal. 2016, 6, 5978.
- He Y.-M.; Song F.-T.; Fan Q.-H. Advances in Transition Metal-Catalyzed Asymmetric Hydrogenation of Heteroaromatic Compounds. Top. Curr. Chem. 2013, 343, 145.10.1007/128_2013_480. - DOI - PubMed
- Wang D.-S.; Chen Q.-A.; Lu S.-M.; Zhou Y.-G. Asymmetric Hydrogenation of Heteroarenes and Arenes. Chem. Rev. 2012, 112, 2557.10.1021/cr200328h. - DOI - PubMed
- Glorius F. Asymmetric Hydrogenation of Aromatic Compounds. Org. Biomol. Chem. 2005, 3, 4171.10.1039/b512139f. - DOI - PubMed
LinkOut - more resources
Full Text Sources