Rejection-associated Mitochondrial Impairment After Heart Transplantation
- PMID: 33134492
- PMCID: PMC7575170
- DOI: 10.1097/TXD.0000000000001065
Rejection-associated Mitochondrial Impairment After Heart Transplantation
Abstract
Background: Mitochondrial dysfunction is associated with poor allograft prognosis. Mitochondrial-related gene expression (GE) in endomyocardial biopsies (EMBs) could be useful as a nonimmune functional marker of rejection. We hypothesize that acute cardiac allograft rejection is associated with decreased mitochondrial-related GE in EMBs.
Methods: We collected 64 routines or clinically indicated EMB from 47 patients after heart transplant. The EMBs were subjected to mRNA sequencing. We conducted weighted gene coexpression network analysis to construct module-derived eigengenes. The modules were assessed by gene ontology enrichment and hub gene analysis. Modules were correlated with the EMBs following the International Society of Heart and Lung Transplantation histology-based criteria and a classification based on GE alone; we also correlated with clinical parameters.
Results: The modules enriched with mitochondria-related and immune-response genes showed the strongest correlation to the clinical traits. Compared with the no-rejection samples, rejection samples had a decreased activity of mitochondrial-related genes and an increased activity of immune-response genes. Biologic processes and hub genes in the mitochondria-related modules were primarily involved with energy generation, substrate metabolism, and regulation of oxidative stress. Compared with International Society of Heart and Lung Transplantation criteria, GE-based classification had stronger correlation to the weighted gene coexpression network analysis-derived functional modules. The brain natriuretic peptide level, ImmuKnow, and Allomap scores had negative relationships with the expression of mitochondria-related modules and positive relationships with immune-response modules.
Conclusions: During acute cardiac allograft rejection, there was a decreased activity of mitochondrial-related genes, related to an increased activity of immune-response genes, and depressed allograft function manifested by brain natriuretic peptide elevation. This suggests a rejection-associated mitochondrial impairment.
Copyright © 2020 The Author(s). Transplantation Direct. Published by Wolters Kluwer Health, Inc.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
References
-
- Lund LH, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-second official adult heart transplantation report–2015; focus theme: early graft failure. J Heart Lung Transplant. 2015; 34:1244–1254 - PubMed
-
- Lund LH, Edwards LB, Kucheryavaya AY, et al. ; International Society of Heart and Lung Transplantation. The registry of the International Society for Heart and Lung Transplantation: thirty-first official adult heart transplant report–2014; focus theme: retransplantation. J Heart Lung Transplant. 2014; 33:996–1008 - PubMed
-
- Billingham ME, Cary NR, Hammond ME, et al. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant. 1990; 9:587–593 - PubMed
-
- Stewart S, Winters GL, Fishbein MC, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant. 2005; 24:1710–1720 - PubMed
-
- Winters GL, Marboe CC, Billingham ME. The International Society for Heart and Lung Transplantation grading system for heart transplant biopsy specimens: clarification and commentary. J Heart Lung Transplant. 1998; 17:754–760 - PubMed
