Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan;36(1):247-259.
doi: 10.1111/jocs.15151. Epub 2020 Nov 1.

The secret life of the mitral valve

Affiliations
Review

The secret life of the mitral valve

Antonio M Calafiore et al. J Card Surg. 2021 Jan.

Abstract

In secondary mitral regurgitation, the concept that the mitral valve (MV) is an innocent bystander, has been challenged by many studies in the last decades. The MV is a living structure with intrinsic plasticity that reacts to changes in stretch or in mechanical stress activating biohumoral mechanisms that have, as purpose, the adaptation of the valve to the new environment. If the adaptation is balanced, the leaflets increase both surface and length and the chordae tendineae lengthen: the result is a valve with different characteristics, but able to avoid or to limit the regurgitation. However, if the adaptation is unbalanced, the leaflets and the chords do not change their size, but become stiffer and rigid, with moderate or severe regurgitation. These changes are mediated mainly by a cytokine, the transforming growth factor-β (TGF-β), which is able to promote the changes that the MV needs to adapt to a new hemodynamic environment. In general, mild TGF-β activation facilitates leaflet growth, excessive TGF-β activation, as after myocardial infarction, results in profibrotic changes in the leaflets, with increased thickness and stiffness. The MV is then a plastic organism, that reacts to the external stimuli, trying to maintain its physiologic integrity. This review has the goal to unveil the secret life of the MV, to understand which stimuli can trigger its plasticity, and to explain why the equation "large heart = moderate/severe mitral regurgitation" and "small heart = no/mild mitral regurgitation" does not work into the clinical practice.

Keywords: ischemia; ischemic adaptation; left ventricle; mitral regurgitation; mitral valve.

PubMed Disclaimer

References

REFERENCES

    1. Hueb AC, Jatene FB, Moreira LF, Pomerantzeff PM, Kallas E, de Oliveira SA. Ventricular remodeling and mitral valve modifications in dilated cardiomyopathy: new insights from anatomic study. J Thorac Cardiovasc Surg. 2002;124:1216-1224.
    1. Grande-Allen KJ, Borowski AG, Troughton RW, et al. Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements: an extracellular matrix and echocardiographic study. J Am Coll Cardiol. 2005;45:54-61.
    1. Grande-Allen KJ, Barber JE, Klatka KM, et al. Mitral valve stiffening in end-stage heart failure: evidence of an organic contribution to functional mitral regurgitation. J Thorac Cardiovasc Surg. 2005;130:783-790.
    1. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673-687.
    1. Levine RA, Hagége AA, Judge DP, et al. Mitral valve disease-morphology and mechanisms. Nat Rev Cardiol. 2015;12:689-710.