Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 1;12(21):20997-21003.
doi: 10.18632/aging.104020. Epub 2020 Nov 1.

Evaluation of droplet digital PCR for quantification of SARS-CoV-2 Virus in discharged COVID-19 patients

Affiliations

Evaluation of droplet digital PCR for quantification of SARS-CoV-2 Virus in discharged COVID-19 patients

Chong Liu et al. Aging (Albany NY). .

Abstract

The worldwide severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has led to the rapid spread of coronavirus disease (COVID-19). The quantitative real time PCR (qPCR) is widely used as the gold standard for clinical detection of SARS-CoV-2. However, more and more infected patients are relapsing after discharge, which suggests qPCR may fail to detect the virus in some cases. In this study, we selected 74 clinical samples from 43 recovering inpatients for qPCR and Droplet Digital PCR (ddPCR) synchronous blind detection, and established a cutoff value for ddPCR diagnosis of COVID-19. The results showed that at a cutoff value of 0.04 copies/μL, the ddPCR sensitivity and specificity are 97.6% and 100%, respectively. In addition, we also analyzed 18 retained samples from 9 discharged patients who relapsed. Although qPCR showed all 18 samples to be negative, ddPCR showed 12 to be positive, and there was only one patient with two negative samples; the other eight patients had at least one positive sample. These results indicate that ddPCR could significantly improve the accuracy of COVID-19 diagnosis, especially for discharged patients with a low viral load, and help to reduce misdiagnosis during recovery.

Keywords: COVID-19; SARS-CoV-2; discharged criteria; droplet digital PCR.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST: The authors declare that they have no conflicts of interest that could have appeared to influence the work reported in this paper.

Figures

Figure 1
Figure 1
The ROC curve for ddPCR.
Figure 2
Figure 2
Flow diagram of the study population.

Similar articles

Cited by

References

    1. Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HH, Luo M, Chen L, Zhao Y. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect. 2020; 81:e6–12. 10.1016/j.jinf.2020.04.002 - DOI - PMC - PubMed
    1. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: relationship to negative RT-PCR testing. Radiology. 2020; 296:E41–45. 10.1148/radiol.2020200343 - DOI - PMC - PubMed
    1. Li X, Zeng W, Li X, Chen H, Shi L, Li X, Xiang H, Cao Y, Chen H, Liu C, Wang J. CT imaging changes of corona virus disease 2019(COVID-19): a multi-center study in Southwest China. J Transl Med. 2020; 18:154. 10.1186/s12967-020-02324-w - DOI - PMC - PubMed
    1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020; 323:1239–42. 10.1001/jama.2020.2648 - DOI - PubMed
    1. Denis JA, Nectoux J, Lamy PJ, Rouillac Le Sciellour C, Guermouche H, Alary AS, Kosmider O, Sarafan-Vasseur N, Jovelet C, Busser B, Nizard P, Taly V, Fina F. Development of digital PCR molecular tests for clinical practice: principles, practical implementation and recommendations. Ann Biol Clin (Paris). 2018; 76:505–23. - PubMed

Publication types

MeSH terms