Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence
- PMID: 33137526
- PMCID: PMC7583624
- DOI: 10.1016/j.watres.2020.116560
Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence
Abstract
In the absence of an effective vaccine to prevent COVID-19 it is important to be able to track community infections to inform public health interventions aimed at reducing the spread and therefore reduce pressures on health-care, improve health outcomes and reduce economic uncertainty. Wastewater surveillance has rapidly emerged as a potential tool to effectively monitor community infections through measuring trends of RNA signal in wastewater systems. In this study SARS-CoV-2 viral RNA N1 and N2 gene regions are quantified in solids collected from influent post grit solids (PGS) and primary clarified sludge (PCS) in two water resource recovery facilities (WRRF) serving Canada's national capital region, i.e., the City of Ottawa, ON (pop. ≈ 1.1M) and the City of Gatineau, QC (pop. ≈ 280K). PCS samples show signal inhibition using RT-ddPCR compared to RT-qPCR, with PGS samples showing similar quantifiable concentrations of RNA using both assays. RT-qPCR shows higher frequency of detection of N1 and N2 gene regions in PCS (92.7, 90.6%, n = 6) as compared to PGS samples (79.2, 82.3%, n = 5). Sampling of PCS may therefore be an effective approach for SARS-CoV-2 viral quantification, especially during periods of declining and low COVID-19 incidence in the community. The pepper mild mottle virus (PMMoV) is determined to have a less variable RNA signal in PCS over a three month period for two WRRFs, regardless of environmental conditions, compared to Bacteroides 16S rRNA or human 18S rRNA, making PMMoV a potentially useful biomarker for normalization of SARS-CoV-2 signal. PMMoV-normalized PCS RNA signal from WRRFs of two cities correlated with the regional public health epidemiological metrics, identifying PCS normalized to a fecal indicator (PMMoV) as a potentially effective tool for monitoring trends during decreasing and low-incidence of infection of SARS-Cov-2 in communities.
Keywords: COVID-19; Primary clarified sludge; SARS-CoV-2; Solids; Virus; Wastewater.
Copyright © 2020. Published by Elsevier Ltd.
Conflict of interest statement
Declaration of Competing Interest The authors declare that no known competing financial interests or personal relationships could appear to influence the work reported in this manuscript.
Figures








Similar articles
-
Impact of coagulation on SARS-CoV-2 and PMMoV viral signal in wastewater solids.Environ Sci Pollut Res Int. 2024 Jan;31(4):5242-5253. doi: 10.1007/s11356-023-31444-1. Epub 2023 Dec 19. Environ Sci Pollut Res Int. 2024. PMID: 38112868
-
Assessment of seasonality and normalization techniques for wastewater-based surveillance in Ontario, Canada.Front Public Health. 2023 Aug 30;11:1186525. doi: 10.3389/fpubh.2023.1186525. eCollection 2023. Front Public Health. 2023. PMID: 37711234 Free PMC article.
-
The role of catchment population size, data normalization, and chronology of public health interventions on wastewater-based COVID-19 viral trends.Sci Total Environ. 2024 Aug 10;937:173272. doi: 10.1016/j.scitotenv.2024.173272. Epub 2024 May 17. Sci Total Environ. 2024. PMID: 38763190
-
Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance.Sci Total Environ. 2022 Jan 20;805:149877. doi: 10.1016/j.scitotenv.2021.149877. Epub 2021 Aug 25. Sci Total Environ. 2022. PMID: 34818780 Free PMC article. Review.
-
Role of pepper mild mottle virus as a tracking tool for fecal pollution in aquatic environments.Arch Microbiol. 2022 Jul 22;204(8):513. doi: 10.1007/s00203-022-03121-3. Arch Microbiol. 2022. PMID: 35864362 Free PMC article. Review.
Cited by
-
Does normalization of SARS-CoV-2 concentrations by Pepper Mild Mottle Virus improve correlations and lead time between wastewater surveillance and clinical data in Alberta (Canada): comparing twelve SARS-CoV-2 normalization approaches.Sci Total Environ. 2023 Jan 15;856(Pt 1):158964. doi: 10.1016/j.scitotenv.2022.158964. Epub 2022 Sep 24. Sci Total Environ. 2023. PMID: 36167131 Free PMC article.
-
Understanding the dynamic relation between wastewater SARS-CoV-2 signal and clinical metrics throughout the pandemic.Sci Total Environ. 2022 Dec 20;853:158458. doi: 10.1016/j.scitotenv.2022.158458. Epub 2022 Sep 6. Sci Total Environ. 2022. PMID: 36075428 Free PMC article.
-
From Alpha to Omicron BA.2: New digital RT-PCR approach and challenges for SARS-CoV-2 VOC monitoring and normalization of variant dynamics in wastewater.Sci Total Environ. 2022 Nov 20;848:157740. doi: 10.1016/j.scitotenv.2022.157740. Epub 2022 Jul 30. Sci Total Environ. 2022. PMID: 35917966 Free PMC article.
-
Understanding COVID-19 Situation in Nepal and Implications for SARS-CoV-2 Transmission and Management.Environ Health Insights. 2022 Jun 7;16:11786302221104348. doi: 10.1177/11786302221104348. eCollection 2022. Environ Health Insights. 2022. PMID: 35694428 Free PMC article.
-
Assessing Multiplex Tiling PCR Sequencing Approaches for Detecting Genomic Variants of SARS-CoV-2 in Municipal Wastewater.mSystems. 2021 Oct 26;6(5):e0106821. doi: 10.1128/mSystems.01068-21. Epub 2021 Oct 19. mSystems. 2021. PMID: 34665013 Free PMC article.
References
-
- Ahmed W., Angel N., Edson J., Bibby K., Bivins A., O'Brien J.W., Choi P.M., Kitajima M., Simpson S.L., Li J., Tscharke B., Verhagen R., Smith W.J.M., Zaugg J., Dierens L., Hugenholtz P., Thomas K.V., Mueller J.F. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020;728 doi: 10.1016/j.scitotenv.2020.138764. - DOI - PMC - PubMed
-
- Ahmed W., Bertsch P.M., Bivins A., Bibby K., Farkas K., Gathercole A., Haramoto E., Gyawali P., Korajkic A., McMinn B.R., Mueller J.F., Simpson S.L., Smith W.J.M., Symonds E.M., Thomas K.V., Verhagen R., Kitajima M. Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Sci. Total Environ. 2020;739 doi: 10.1016/j.scitotenv.2020.139960. - DOI - PMC - PubMed
-
- Alpaslan-Kocamemi, B., Kurt, H., Sait, A., Sarac, F., Saatci, A.M., Pakdemirli, B., 2020. SARS-CoV-2 detection in Istanbul wastewater treatment plant sludges. medRxiv 2020.05.12.20099358. 10.1101/2020.05.12.20099358. - DOI
-
- APHA . 17th ed. APHA; 1989. Standard Methods for the Examination of Water and Wastewater. Washington, DC.
-
- APHA . Standard Methods for the Examination of Water and Wastewater. 22nd ed. APHA, WEF, AWWA; Washington, D.C: 2012.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous