Evaluation of mechanisms of action of re-purposed drugs for treatment of COVID-19
- PMID: 33137649
- PMCID: PMC7558230
- DOI: 10.1016/j.cellimm.2020.104240
Evaluation of mechanisms of action of re-purposed drugs for treatment of COVID-19
Abstract
Coronavirus disease 2019 (COVID-19) is a global health emergency caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The rapid worldwide spread of SARS-CoV-2 infection has necessitated a global effort to identify effective therapeutic strategies in the absence of vaccine. Among the re-purposed drugs being tested currently, hydroxychloroquine (HCQ), without or with zinc ion (Zn++) and the antibiotic azithromycin (AZM), has been administered to prevent or treat patients with COVID-19. The outcome of multiple clinical studies on HCQ has been mixed. Zn++ interferes with viral replication by inhibiting replicative enzymes and its entry into cells may be facilitated by HCQ. Another immunomodulatory drug, methotrexate (MTX), is well known for its ability to mitigate overactive immune system by upregulating the anti-inflammatory protein, A20. However, its beneficial effect in treating COVID-19 has not drawn much attention. This review provides an overview of the virology of SARS-CoV-2 and an analysis of the mechanisms by which these anti-inflammatory agents may act in the treatment of COVID-19 patients. We propose a rationale for the combinatorial use of these re-purposed drugs that may help to combat this ongoing pandemic health emergency.
Keywords: COVID-19; Cytokine storm; Hydroxychloroquine; Methotrexate; SARS-CoV-2.
Copyright © 2020 Elsevier Inc. All rights reserved.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures





References
-
- Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Muller M.A., Drosten C., Pohlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181 271-280 e278. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous