TCA cycle signalling and the evolution of eukaryotes
- PMID: 33137653
- PMCID: PMC7116391
- DOI: 10.1016/j.copbio.2020.09.014
TCA cycle signalling and the evolution of eukaryotes
Abstract
A major question remaining in the field of evolutionary biology is how prokaryotic organisms made the leap to complex eukaryotic life. The prevailing theory depicts the origin of eukaryotic cell complexity as emerging from the symbiosis between an α-proteobacterium, the ancestor of present-day mitochondria, and an archaeal host (endosymbiont theory). A primary contribution of mitochondria to eukaryogenesis has been attributed to the mitochondrial genome, which enabled the successful internalisation of bioenergetic membranes and facilitated remarkable genome expansion. It has also been postulated that a key contribution of the archaeal host during eukaryogenesis was in providing 'archaeal histones' that would enable compaction and regulation of an expanded genome. Yet, how the communication between the host and the symbiont evolved is unclear. Here, we propose an evolutionary concept in which mitochondrial TCA cycle signalling was also a crucial player during eukaryogenesis enabling the dynamic control of an expanded genome via regulation of DNA and histone modifications. Furthermore, we discuss how TCA cycle remodelling is a common evolutionary strategy invoked by eukaryotic organisms to coordinate stress responses and gene expression programmes, with a particular focus on the TCA cycle-derived metabolite itaconate.
Copyright © 2020 Elsevier Ltd. All rights reserved.
Figures
References
-
- Chandel NS. Evolution of Mitochondria as Signaling Organelles. Cell Metab. 2015;22:204–206. - PubMed
-
- Saraste M. Oxidative phosphorylation at the fin de siecle. Science. 1999;283:1488–1493. - PubMed
-
- Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277:30409–30412. - PubMed
-
- Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Mühlenhoff U. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta. 2012;1823:1491–1508. - PubMed
-
- Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, Hernández M, Müller M, Lucocq JM. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426:172–176. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
