Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 28;4(33):eaax7043.
doi: 10.1126/scirobotics.aax7043.

An actuatable soft reservoir modulates host foreign body response

Affiliations

An actuatable soft reservoir modulates host foreign body response

E B Dolan et al. Sci Robot. .

Abstract

The performance of indwelling medical devices that depend on an interface with soft tissue is plagued by complex, unpredictable foreign body responses. Such devices-including breast implants, biosensors, and drug delivery devices-are often subject to a collection of biological host responses, including fibrosis, which can impair device functionality. This work describes a milliscale dynamic soft reservoir (DSR) that actively modulates the biomechanics of the biotic-abiotic interface by altering strain, fluid flow, and cellular activity in the peri-implant tissue. We performed cyclical actuation of the DSR in a preclinical rodent model. Evaluation of the resulting host response showed a significant reduction in fibrous capsule thickness (P = 0.0005) in the actuated DSR compared with non-actuated controls, whereas the collagen density and orientation were not changed. We also show a significant reduction in myofibroblasts (P = 0.0036) in the actuated group and propose that actuation-mediated strain reduces differentiation and proliferation of myofibroblasts and therefore extracellular matrix production. Computational models quantified the effect of actuation on the reservoir and surrounding fluid. By adding a porous membrane and a therapy reservoir to the DSR, we demonstrate that, with actuation, we could (i) increase transport of a therapy analog and (ii) enhance pharmacokinetics and time to functional effect of an inotropic agent. The dynamic reservoirs presented here may act as a versatile tool to further understand, and ultimately to ameliorate, the host response to implantable biomaterials.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources