Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding
- PMID: 33138915
- PMCID: PMC7609058
- DOI: 10.7554/eLife.59816
Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding
Abstract
Spatial navigation requires landmark coding from two perspectives, relying on viewpoint-invariant and self-referenced representations. The brain encodes information within each reference frame but their interactions and functional dependency remains unclear. Here we investigate the relationship between neurons in the rat's retrosplenial cortex (RSC) and entorhinal cortex (MEC) that increase firing near boundaries of space. Border cells in RSC specifically encode walls, but not objects, and are sensitive to the animal's direction to nearby borders. These egocentric representations are generated independent of visual or whisker sensation but are affected by inputs from MEC that contains allocentric spatial cells. Pharmaco- and optogenetic inhibition of MEC led to a disruption of border coding in RSC, but not vice versa, indicating allocentric-to-egocentric transformation. Finally, RSC border cells fire prospective to the animal's next motion, unlike those in MEC, revealing the MEC-RSC pathway as an extended border coding circuit that implements coordinate transformation to guide navigation behavior.
Keywords: border cell; egocentric-allocentric transformation; entorhinal cortex; neuroscience; rat; retrosplenial cortex.
© 2020, van Wijngaarden et al.
Conflict of interest statement
Jv, SB, HI No competing interests declared
Figures





















Similar articles
-
Gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, entorhinal cortex, and hippocampus.Hippocampus. 2023 May;33(5):465-487. doi: 10.1002/hipo.23513. Epub 2023 Mar 1. Hippocampus. 2023. PMID: 36861201 Free PMC article. Review.
-
Allocentric and egocentric spatial representations coexist in rodent medial entorhinal cortex.Nat Commun. 2025 Jan 3;16(1):356. doi: 10.1038/s41467-024-54699-9. Nat Commun. 2025. PMID: 39753542 Free PMC article.
-
A model of path integration and representation of spatial context in the retrosplenial cortex.Biol Cybern. 2020 Apr;114(2):303-313. doi: 10.1007/s00422-020-00833-x. Epub 2020 Apr 18. Biol Cybern. 2020. PMID: 32306125
-
Learning the Vector Coding of Egocentric Boundary Cells from Visual Data.J Neurosci. 2023 Jul 12;43(28):5180-5190. doi: 10.1523/JNEUROSCI.1071-22.2023. Epub 2023 Jun 7. J Neurosci. 2023. PMID: 37286350 Free PMC article.
-
Mechanistic flexibility of the retrosplenial cortex enables its contribution to spatial cognition.Trends Neurosci. 2022 Apr;45(4):284-296. doi: 10.1016/j.tins.2022.01.007. Epub 2022 Feb 17. Trends Neurosci. 2022. PMID: 35183378 Review.
Cited by
-
Gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, entorhinal cortex, and hippocampus.Hippocampus. 2023 May;33(5):465-487. doi: 10.1002/hipo.23513. Epub 2023 Mar 1. Hippocampus. 2023. PMID: 36861201 Free PMC article. Review.
-
Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex.Elife. 2021 Jun 25;10:e62207. doi: 10.7554/eLife.62207. Elife. 2021. PMID: 34170817 Free PMC article.
-
Retrosplenial inputs drive visual representations in the medial entorhinal cortex.Cell Rep. 2024 Jul 23;43(7):114470. doi: 10.1016/j.celrep.2024.114470. Epub 2024 Jul 9. Cell Rep. 2024. PMID: 38985682 Free PMC article.
-
Rethinking retrosplenial cortex: Perspectives and predictions.Neuron. 2023 Jan 18;111(2):150-175. doi: 10.1016/j.neuron.2022.11.006. Epub 2022 Dec 1. Neuron. 2023. PMID: 36460006 Free PMC article. Review.
-
A Hippocampal-Parietal Network for Reference Frame Coordination.J Neurosci. 2025 Apr 23;45(17):e1782242025. doi: 10.1523/JNEUROSCI.1782-24.2025. J Neurosci. 2025. PMID: 39909564
References
Publication types
MeSH terms
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources