Evidence that coronavirus superspreading is fat-tailed
- PMID: 33139561
- PMCID: PMC7703634
- DOI: 10.1073/pnas.2018490117
Evidence that coronavirus superspreading is fat-tailed
Abstract
Superspreaders, infected individuals who result in an outsized number of secondary cases, are believed to underlie a significant fraction of total SARS-CoV-2 transmission. Here, we combine empirical observations of SARS-CoV and SARS-CoV-2 transmission and extreme value statistics to show that the distribution of secondary cases is consistent with being fat-tailed, implying that large superspreading events are extremal, yet probable, occurrences. We integrate these results with interaction-based network models of disease transmission and show that superspreading, when it is fat-tailed, leads to pronounced transmission by increasing dispersion. Our findings indicate that large superspreading events should be the targets of interventions that minimize tail exposure.
Keywords: COVID-19; SARS-CoV-2; extreme value theory; infectious disease; superspreading.
Copyright © 2020 the Author(s). Published by PNAS.
Conflict of interest statement
The authors declare no competing interest.
Figures


Similar articles
-
Superspreading in early transmissions of COVID-19 in Indonesia.Sci Rep. 2020 Dec 28;10(1):22386. doi: 10.1038/s41598-020-79352-5. Sci Rep. 2020. PMID: 33372191 Free PMC article.
-
A non-parametric method for determining epidemiological reproduction numbers.J Math Biol. 2021 Mar 15;82(5):37. doi: 10.1007/s00285-021-01590-6. J Math Biol. 2021. PMID: 33721104 Free PMC article.
-
COVID-19 Superspreading Suggests Mitigation by Social Network Modulation.Phys Rev Lett. 2021 Mar 19;126(11):118301. doi: 10.1103/PhysRevLett.126.118301. Phys Rev Lett. 2021. PMID: 33798363
-
Superspreading, overdispersion and their implications in the SARS-CoV-2 (COVID-19) pandemic: a systematic review and meta-analysis of the literature.BMC Public Health. 2023 May 30;23(1):1003. doi: 10.1186/s12889-023-15915-1. BMC Public Health. 2023. PMID: 37254143 Free PMC article.
-
Superspreading of SARS-CoV-2: a systematic review and meta-analysis of event attack rates and individual transmission patterns.Epidemiol Infect. 2024 Oct 8;152:e121. doi: 10.1017/S0950268824000955. Epidemiol Infect. 2024. PMID: 39377138 Free PMC article.
Cited by
-
Monitoring real-time transmission heterogeneity from incidence data.PLoS Comput Biol. 2022 Dec 1;18(12):e1010078. doi: 10.1371/journal.pcbi.1010078. eCollection 2022 Dec. PLoS Comput Biol. 2022. PMID: 36455043 Free PMC article.
-
Heterogeneity is a key factor describing the initial outbreak of COVID-19.Appl Math Model. 2023 May;117:714-725. doi: 10.1016/j.apm.2023.01.005. Epub 2023 Jan 9. Appl Math Model. 2023. PMID: 36643779 Free PMC article.
-
High variability in transmission of SARS-CoV-2 within households and implications for control.PLoS One. 2021 Nov 10;16(11):e0259097. doi: 10.1371/journal.pone.0259097. eCollection 2021. PLoS One. 2021. PMID: 34758042 Free PMC article.
-
Personality correlates of COVID-19 infection proclivity: Extraversion kills.Pers Individ Dif. 2021 Oct;180:110994. doi: 10.1016/j.paid.2021.110994. Epub 2021 May 14. Pers Individ Dif. 2021. PMID: 34012186 Free PMC article.
-
[SARS-CoV-2 transmission routes and implications for self- and non-self-protection].Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2021 Sep;64(9):1050-1057. doi: 10.1007/s00103-021-03389-8. Epub 2021 Jul 29. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2021. PMID: 34324023 Free PMC article. Review. German.
References
-
- Embrechts P., Klüppelberg C., Mikosch K., Modelling Extremal Events for Insurance and Finance (Stochastic Modelling and Applied Probability, Springer, 1997).
-
- Cirillo P., Taleb N. N., Tail risk of contagious diseases. Nat. Phys. 16, 606–613 (2020).
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous