Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Sep;12(9):5119-5127.
doi: 10.21037/jtd.2020.04.15.

Biomarkers in immunotherapy: literature review and future directions

Affiliations
Review

Biomarkers in immunotherapy: literature review and future directions

Rebecca Pharaon et al. J Thorac Dis. 2020 Sep.

Abstract

Within the past decade, immunotherapy has revolutionized the treatment of advanced non-small lung cancer (NSCLC). Immune checkpoint inhibitors (ICIs) such as pembrolizumab, nivolumab, atezolizumab, and durvalumab have shown superiority over chemotherapy regimens in patients with programmed death-ligand 1 (PD-L1) expression. Several predictive molecular biomarkers, including PD-L1 expression and high tumor mutation burden, have shown utility in discovering lung cancer patient groups that would benefit from ICIs. However, there remains to be a reliable imaging biomarker that would clearly select patients, through baseline or restaging imaging, who would respond or have a prolonged response to ICIs. The purpose of this review is to highlight the role of ICIs in patients with advanced NSCLC and past or current studies in potential biomarkers as well as future directions on the role of imaging in immunotherapy.

Keywords: Non-small cell lung cancer (NSCLC); imaging biomarkers; immunotherapy; in vivo imaging; molecular biomarkers.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/jtd.2020.04.15). The series “Role of Precision Imaging in Thoracic Disease” was commissioned by the editorial office without any funding or sponsorship. EM has received honoraria from Astra Zeneca Pharmaceuticals, Merck & Co, and received research support from Pfizer, Astra Zeneca, Merck, BMS, GSK, and Tessa Pharmaceuticals. The other authors have no other conflicts of interest to declare.

Figures

Figure 1
Figure 1
Anti-PD-1, anti-PD-L1, and anti-CTLA-4 monoclonal antibodies targets and mechanisms.

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7-34. 10.3322/caac.21551 - DOI - PubMed
    1. Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N Engl J Med 2016;375:1823-33. 10.1056/NEJMoa1606774 - DOI - PubMed
    1. Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 2019;393:1819-30. 10.1016/S0140-6736(18)32409-7 - DOI - PubMed
    1. Carbone DP, Reck M, Paz-Ares L, et al. First-Line Nivolumab in Stage IV or Recurrent Non–Small-Cell Lung Cancer. N Engl J Med 2017;376:2415-26. 10.1056/NEJMoa1613493 - DOI - PMC - PubMed
    1. Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N Engl J Med 2018;378:2288-301. 10.1056/NEJMoa1716948 - DOI - PubMed