Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Oct;11(5):486-93.
doi: 10.1111/j.1530-0277.1987.tb01929.x.

Chronic ethanol consumption affects filipin-cholesterol complexes and intramembranous particles of synaptosomes of rat brain cortex

Affiliations

Chronic ethanol consumption affects filipin-cholesterol complexes and intramembranous particles of synaptosomes of rat brain cortex

J Renau-Piqueras et al. Alcohol Clin Exp Res. 1987 Oct.

Abstract

To assess the effect of ethanol on the planar distribution of cholesterol as well as on the surface architecture of presynaptic terminals of rats, synaptosomes isolated from cerebral cortex of rats chronically exposed to alcohol were incubated with filipin, a cytochemical marker for beta-hydroxycholesterol, and analyzed using both conventional (qualitative and quantitative) and freeze-fracture electron microscopy. Synaptosomes incubated in the absence of filipin were used as cytochemical controls. Biochemical determination indicates a 12% increase of cholesterol in synaptosomal membranes from alcohol treated rats. This increase was confirmed by a significant increment in the number of filipin-cholesterol complexes. Synaptosomes of treated rats showed a reduction in the total number of synaptic vesicles (SV) as well as a decrease in the density and total number of intramembranous particles (IMP) per synaptosome. In control rats, most synaptosomal IMP were distributed in clusters whereas in those of rats exposed to alcohol they were distributed at random. These changes in distribution of IMP were also observed in presynaptic terminals analyzed "in situ." These findings indicate that ethanol acts on the presynaptic terminals. The variations in cholesterol content as well as in the density and distribution of IMP appear to be related to alcohol-induced changes in the physicochemical properties of components of the synaptosomal membrane.

PubMed Disclaimer

Publication types

LinkOut - more resources