Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Mar 3;13(8):9369-9389.
doi: 10.1021/acsami.0c15644. Epub 2020 Nov 4.

Rationally Designed Multivalent Aptamers Targeting Cell Surface for Biomedical Applications

Affiliations
Review

Rationally Designed Multivalent Aptamers Targeting Cell Surface for Biomedical Applications

Meihua Lin et al. ACS Appl Mater Interfaces. .

Abstract

Specific interactions between ligands and receptors on cell surface play an important role in the cell biological process. Nucleic acid aptamers as commonly used ligands enable specific recognition and tight binding to membrane protein receptors for modulation of cell fate. Therefore, molecular probes with aptamers can be applied for cancer diagnosis and targeted therapy by targeting overexpression membrane proteins of cancer cells. However, because of their fast degradation and rapid glomerulus clearance in vivo, the applications of aptamers in physiological conditions remain challenged. Inspired by natural multivalent interactions, many approaches have been developed to construct multivalent aptamers to improve the performance of aptamers in complex matrices with higher binding affinity, more stability, and longer circulation time. In this review, we first introduce the aptamer generation from purified protein-based SELEX and whole cell-based SELEX for targeting the cell surface. We then highlight the approaches to fabricate multivalent aptamers and discuss their properties. By integrating different materials (including inorganic nanomaterials, diacyllipid, polymeric nanoparticles, and DNA nanostructures) as scaffolds with an interface modification technique, we have summarized four kinds of multivalent aptamers. After that, representative applications in biosensing and targeted therapy are illustrated to show the elevated performance of multivalent aptamers. In addition, we analyze the challenges and opportunities for the clinical practices of multivalent aptamers.

Keywords: DNA nanotechnology; SELEX; cell membrane receptors; diagnosis; multivalent aptamers; nanomaterial; therapy.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources