Integrative Analysis of Prognostic Biomarkers for Acute Rejection in Kidney Transplant Recipients
- PMID: 33148975
- DOI: 10.1097/TP.0000000000003516
Integrative Analysis of Prognostic Biomarkers for Acute Rejection in Kidney Transplant Recipients
Erratum in
-
Integrative Analysis of Prognostic Biomarkers for Acute Rejection in Kidney Transplant Recipients: Erratum.Transplantation. 2022 Jan 1;106(1):e111. doi: 10.1097/TP.0000000000004015. Transplantation. 2022. PMID: 34905764 No abstract available.
Abstract
Background: Noninvasive biomarkers may predict adverse events such as acute rejection after kidney transplantation and may be preferable to existing methods because of superior accuracy and convenience. It is uncertain how these biomarkers, often derived from a single study, perform across different cohorts of recipients.
Methods: Using a cross-validation framework that evaluates the performance of biomarkers, the aim of this study was to devise an integrated gene signature set that predicts acute rejection in kidney transplant recipients. Inclusion criteria were publicly available datasets of gene signatures that reported acute rejection episodes after kidney transplantation. We tested the predictive probability for acute rejection using gene signatures within individual datasets and validated the set using other datasets. Eight eligible studies of 1454 participants, with a total of 512 acute rejections episodes were included.
Results: All sets of gene signatures had good positive and negative predictive values (79%-96%) for acute rejection within their own cohorts, but the predictability reduced to <50% when tested in other independent datasets. By integrating signature sets with high specificity scores across all studies, a set of 150 genes (included CXCL6, CXCL11, OLFM4, and PSG9) which are known to be associated with immune responses, had reasonable predictive values (varied between 69% and 90%).
Conclusions: A set of gene signatures for acute rejection derived from a specific cohort of kidney transplant recipients do not appear to provide adequate prediction in an independent cohort of transplant recipients. However, the integration of gene signature sets with high specificity scores may improve the prediction performance of these markers.
Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.
Conflict of interest statement
The authors declare no conflicts of interest.
References
-
- Wong G, Howard K, Chapman JR, et al. Comparative survival and economic benefits of deceased donor kidney transplantation and dialysis in people with varying ages and co-morbidities. PLoS One. 2012;7:e29591.
-
- Abecassis M, Bartlett ST, Collins AJ, et al. Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clin J Am Soc Nephrol. 2008;3:471–480.
-
- Serur D, Saal S, Wang J, et al. Deceased-donor kidney transplantation: improvement in long-term survival. Nephrol Dial Transplant. 2011;26:317–324.
-
- Li L, Khatri P, Sigdel TK, et al. A peripheral blood diagnostic test for acute rejection in renal transplantation. Am J Transplant. 2012;12:2710–2718.
-
- Kurian SM, Williams AN, Gelbart T, et al. Molecular classifiers for acute kidney transplant rejection in peripheral blood by whole genome gene expression profiling. Am J Transplant. 2014;14:1164–1172.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
