Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Spring;29(1):1-73.
doi: 10.1162/evco_a_00282. Epub 2020 Nov 5.

A Systematic Literature Review of the Successors of "NeuroEvolution of Augmenting Topologies"

Affiliations

A Systematic Literature Review of the Successors of "NeuroEvolution of Augmenting Topologies"

Evgenia Papavasileiou et al. Evol Comput. 2021 Spring.

Abstract

NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a plethora of methods have been proposed that extend NEAT in different aspects. In this article, we present a systematic literature review (SLR) to list and categorize the methods succeeding NEAT. Our review protocol identified 232 papers by merging the findings of two major electronic databases. Applying criteria that determine the paper's relevance and assess its quality, resulted in 61 methods that are presented in this article. Our review article proposes a new categorization scheme of NEAT's successors into three clusters. NEAT-based methods are categorized based on 1) whether they consider issues specific to the search space or the fitness landscape, 2) whether they combine principles from NE and another domain, or 3) the particular properties of the evolved ANNs. The clustering supports researchers 1) understanding the current state of the art that will enable them, 2) exploring new research directions or 3) benchmarking their proposed method to the state of the art, if they are interested in comparing, and 4) positioning themselves in the domain or 5) selecting a method that is most appropriate for their problem.

Keywords: NeuroEvolution; artificial neural networks; encoding; genetic algorithms; systematic literature review.; topology evolution.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources