Therapeutic Ultrasound Parameter Optimization for Drug Delivery Applied to a Murine Model of Hepatocellular Carcinoma
- PMID: 33153807
- PMCID: PMC8489309
- DOI: 10.1016/j.ultrasmedbio.2020.09.009
Therapeutic Ultrasound Parameter Optimization for Drug Delivery Applied to a Murine Model of Hepatocellular Carcinoma
Abstract
Ultrasound and microbubble (USMB)-mediated drug delivery is a valuable tool for increasing the efficiency of the delivery of therapeutic agents to cancer while maintaining low systemic toxicity. Typically, selection of USMB drug delivery parameters used in current research settings are either based on previous studies described in the literature or optimized using tissue-mimicking phantoms. However, phantoms rarely mimic in vivo tumor environments, and the selection of parameters should be based on the application or experiment. In the following study, we optimized the therapeutic parameters of the ultrasound drug delivery system to achieve the most efficient in vivo drug delivery using fluorescent semiconducting polymer nanoparticles as a model nanocarrier. We illustrate that voltage, pulse repetition frequency and treatment time (i.e., number of ultrasound pulses per therapy area) delivered to the tumor can successfully be optimized in vivo to ensure effective delivery of the semiconducting polymer nanoparticles to models of hepatocellular carcinoma. The optimal in vivo parameters for USMB drug delivery in this study were 70 V (peak negative pressure = 3.4 MPa, mechanical index = 1.22), 1-Hz pulse repetition frequency and 100-s therapy time. USMB-mediated drug delivery using in vivo optimized ultrasound parameters caused an up to 2.2-fold (p < 0.01) increase in drug delivery to solid tumors compared with that using phantom-optimized ultrasound parameters.
Keywords: Drug delivery; Hepatocellular carcinoma; Microbubbles; Sonoporation; Therapy; Ultrasound.
Copyright © 2020 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Conflict of interest disclosure The authors declare no competing interests.
Figures












Similar articles
-
Enhancing laser therapy using PEGylated gold nanoparticles combined with ultrasound and microbubbles.Ultrasonics. 2015 Mar;57:36-43. doi: 10.1016/j.ultras.2014.10.015. Epub 2014 Oct 19. Ultrasonics. 2015. PMID: 25459371
-
Breast Cancer Cell Line Phenotype Affects Sonoporation Efficiency Under Optimal Ultrasound Microbubble Conditions.Med Sci Monit. 2018 Dec 14;24:9054-9062. doi: 10.12659/MSM.910790. Med Sci Monit. 2018. PMID: 30546004 Free PMC article.
-
Ultrasound/microbubble-mediated targeted delivery of anticancer microRNA-loaded nanoparticles to deep tissues in pigs.J Control Release. 2019 Sep 10;309:1-10. doi: 10.1016/j.jconrel.2019.07.024. Epub 2019 Jul 18. J Control Release. 2019. PMID: 31326463 Free PMC article.
-
Using ultrasound and microbubble to enhance the effects of conventional cancer therapies in clinical settings.Cancer Metastasis Rev. 2025 Mar 15;44(1):39. doi: 10.1007/s10555-025-10255-5. Cancer Metastasis Rev. 2025. PMID: 40088396 Free PMC article. Review.
-
Endothelial Cells, First Target of Drug Delivery Using Microbubble-Assisted Ultrasound.Ultrasound Med Biol. 2020 Jul;46(7):1565-1583. doi: 10.1016/j.ultrasmedbio.2020.03.013. Epub 2020 Apr 22. Ultrasound Med Biol. 2020. PMID: 32331799 Review.
Cited by
-
Application of nanoultrasonography in early diagnosis of coronary heart disease.Nanomedicine (Lond). 2025 Jan;20(1):79-89. doi: 10.1080/17435889.2024.2435255. Epub 2024 Dec 5. Nanomedicine (Lond). 2025. PMID: 39639651 Review.
-
Efficacy optimization of low frequency microbubble-mediated sonoporation as a drug delivery platform to cancer cells.Int J Pharm X. 2022 Sep 22;4:100132. doi: 10.1016/j.ijpx.2022.100132. eCollection 2022 Dec. Int J Pharm X. 2022. PMID: 36189459 Free PMC article.
-
Engineered Cell-Derived Vesicles Displaying Targeting Peptide and Functionalized with Nanocarriers for Therapeutic microRNA Delivery to Triple-Negative Breast Cancer in Mice.Adv Healthc Mater. 2022 Mar;11(5):e2101387. doi: 10.1002/adhm.202101387. Epub 2021 Dec 17. Adv Healthc Mater. 2022. PMID: 34879180 Free PMC article.
-
Ultrasound-Responsive Nanocarriers for Breast Cancer Chemotherapy.Micromachines (Basel). 2022 Sep 11;13(9):1508. doi: 10.3390/mi13091508. Micromachines (Basel). 2022. PMID: 36144131 Free PMC article. Review.
-
Ultrasound-Guided Microbubble-Mediated Locoregional Delivery of Multiple MicroRNAs Improves Chemotherapy in Hepatocellular Carcinoma.Nanotheranostics. 2022 Jan 1;6(1):62-78. doi: 10.7150/ntno.63320. eCollection 2022. Nanotheranostics. 2022. PMID: 34976581 Free PMC article.
References
-
- Averkiou M, Powers J, Skyba D, Bruce M, Jensen S, 2003. Ultrasound contrast imaging research. Ultrasound Q. 19 (1), 27–37. - PubMed
-
- Bao L, Yan Y, Xu C, Ji W, Shen S, Xu G, Zeng Y, Sun B, Qian H, Chen L, Wu M, Su C, Chen J, 2013. MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathor2. Cancer Lett. 337 (2), 226–236. - PubMed
-
- Bao S, Thrall BD, Miller DL, 1997. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med. Biol. 23 (6), 953–959. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical