Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul-Dec;38(3 & 4):313-318.
doi: 10.4103/ijmm.IJMM_20_384.

Expected plazomicin susceptibility in India based on the prevailing aminoglycoside resistance mechanisms in Gram-negative organisms derived from whole-genome sequencing

Affiliations
Free article

Expected plazomicin susceptibility in India based on the prevailing aminoglycoside resistance mechanisms in Gram-negative organisms derived from whole-genome sequencing

Agila Kumari Pragasam et al. Indian J Med Microbiol. 2020 Jul-Dec.
Free article

Abstract

Background: Aminoglycoside resistance is a growing challenge, and it is commonly mediated by the aminoglycoside-modifying enzymes (AMEs), followed by 16S rRNA methyl transferase. Plazomicin, a novel aminoglycoside agent approved by the Food and Drug Administration for complicated urinary tract infections is proven to overcome resistance mediated by AMEs but not due to 16S rRNA methyl transferase (16SRMTases). We undertook this study to predict the efficacy of plazomicin in India based on the antimicrobial resistance profile derived from whole-genome sequencing (WGS).

Methodology: A total of 386 clinical isolates of Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii subjected to WGS were screened for aminoglycoside-resistance mechanisms such as AMEs and 16SRMTases and its association with carbapenemases.

Results: AMEs was present in all E. coli, A. baumannii and in 90% of K. pneumoniae. In addition, up to 47% of E. coli and 38% of K. pneumoniae co-carried 16SRMTases with AMEs genes. However, A. baumannii showed 87% of isolates co-harbouring 16SRMTase. bla NDM, bla Oxa-48-like and bla Oxa-23-like were the most predominant carbapenemases in E. coli, K. pneumoniae and A. baumannii, respectively. Notably, 48% of NDM-producing E. coli and 35% of Oxa-48-like producing K. pneumoniae were identified to co-harbour AMEs + RMTAses, where plazomicin may not be useful.

Conclusion: Overall, 53%, 62% and 14% of carbapenemase-producing E. coli, K. pneumoniae and A. baumannii harbours only AMEs, indicating the role of plazomicin use. Plazomicin can be used both for ESBLs as "carbapenem-sparing agent" and carbapenemase producers as "colistin-sparing agent." For optimal use, it is essential to know the molecular epidemiology of resistance in a given geographical region where plazomicin empirical therapy is considered.

Keywords: 16S rRNA methyl transferases; India; aminoglycoside-modifying enzymes; aminoglycosides; carbapenemases; plazomicin; susceptibility.

PubMed Disclaimer

Conflict of interest statement

None

MeSH terms

LinkOut - more resources