Voxel-Based quantitative MRI reveals spatial patterns of grey matter alteration in multiple sclerosis
- PMID: 33155763
- PMCID: PMC7856642
- DOI: 10.1002/hbm.25274
Voxel-Based quantitative MRI reveals spatial patterns of grey matter alteration in multiple sclerosis
Abstract
Despite robust postmortem evidence and potential clinical importance of gray matter (GM) pathology in multiple sclerosis (MS), assessing GM damage by conventional magnetic resonance imaging (MRI) remains challenging. This prospective cross-sectional study aimed at characterizing the topography of GM microstructural and volumetric alteration in MS using, in addition to brain atrophy measures, three quantitative MRI (qMRI) parameters-magnetization transfer (MT) saturation, longitudinal (R1), and effective transverse (R2*) relaxation rates, derived from data acquired during a single scanning session. Our study involved 35 MS patients (14 relapsing-remitting MS; 21 primary or secondary progressive MS) and 36 age-matched healthy controls (HC). The qMRI maps were computed and segmented in different tissue classes. Voxel-based quantification (VBQ) and voxel-based morphometry (VBM) statistical analyses were carried out using multiple linear regression models. In MS patients compared with HC, three configurations of GM microstructural/volumetric alterations were identified. (a) Co-localization of GM atrophy with significant reduction of MT, R1, and/or R2*, usually observed in primary cortices. (b) Microstructural modifications without significant GM loss: hippocampus and paralimbic cortices, showing reduced MT and/or R1 values without significant atrophy. (c) Atrophy without significant change in microstructure, identified in deep GM nuclei. In conclusion, this quantitative multiparametric voxel-based approach reveals three different spatially-segregated combinations of GM microstructural/volumetric alterations in MS that might be associated with different neuropathology.
Keywords: atrophy; demyelination; gray matter; multiple sclerosis; quantitative MRI; voxel-based analysis.
© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
Figures



Similar articles
-
Multiparameter MRI quantification of microstructural tissue alterations in multiple sclerosis.Neuroimage Clin. 2019;23:101879. doi: 10.1016/j.nicl.2019.101879. Epub 2019 May 29. Neuroimage Clin. 2019. PMID: 31176293 Free PMC article.
-
Clinical correlates of R1 relaxometry and magnetic susceptibility changes in multiple sclerosis: a multi-parameter quantitative MRI study of brain iron and myelin.Eur Radiol. 2023 Mar;33(3):2185-2194. doi: 10.1007/s00330-022-09154-y. Epub 2022 Oct 14. Eur Radiol. 2023. PMID: 36241917 Free PMC article.
-
Determinants of Deep Gray Matter Atrophy in Multiple Sclerosis: A Multimodal MRI Study.AJNR Am J Neuroradiol. 2019 Jan;40(1):99-106. doi: 10.3174/ajnr.A5915. Epub 2018 Dec 20. AJNR Am J Neuroradiol. 2019. PMID: 30573464 Free PMC article.
-
Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI.Neuroimage Clin. 2018 Apr 26;19:466-475. doi: 10.1016/j.nicl.2018.04.023. eCollection 2018. Neuroimage Clin. 2018. PMID: 29984155 Free PMC article. Review.
-
Localised grey matter atrophy in multiple sclerosis is network-based: a coordinate-based meta-analysis.Clin Radiol. 2019 Oct;74(10):816.e19-816.e28. doi: 10.1016/j.crad.2019.07.005. Epub 2019 Aug 14. Clin Radiol. 2019. PMID: 31421864 Free PMC article.
Cited by
-
Brain microstructure is linked to cognitive fatigue in early multiple sclerosis.J Neurol. 2024 Jun;271(6):3537-3545. doi: 10.1007/s00415-024-12316-1. Epub 2024 Mar 28. J Neurol. 2024. PMID: 38538776
-
Quantitative magnetization transfer imaging in relapsing-remitting multiple sclerosis: a systematic review and meta-analysis.Brain Commun. 2022 Apr 4;4(2):fcac088. doi: 10.1093/braincomms/fcac088. eCollection 2022. Brain Commun. 2022. PMID: 35652121 Free PMC article. Review.
-
Using quantitative magnetic resonance imaging to track cerebral alterations in multiple sclerosis brain: A longitudinal study.Brain Behav. 2023 May;13(5):e2923. doi: 10.1002/brb3.2923. Epub 2023 Apr 20. Brain Behav. 2023. PMID: 37078406 Free PMC article.
-
MBV-Pipe: A One-Stop Toolbox for Assessing Mouse Brain Morphological Changes for Cross-Scale Studies.Neuroinformatics. 2024 Oct;22(4):555-568. doi: 10.1007/s12021-024-09687-1. Epub 2024 Sep 16. Neuroinformatics. 2024. PMID: 39278985
-
qMRI-BIDS: An extension to the brain imaging data structure for quantitative magnetic resonance imaging data.Sci Data. 2022 Aug 24;9(1):517. doi: 10.1038/s41597-022-01571-4. Sci Data. 2022. PMID: 36002444 Free PMC article.
References
-
- Andica, C. , Hagiwara, A. , Kamagata, K. , Yokoyama, K. , Shimoji, K. , Saito, A. , … Aoki, S. (2019). Gray matter alterations in early and late relapsing‐remitting multiple sclerosis evaluated with synthetic quantitative magnetic resonance imaging. Scientific Reports, 9, 1–10. 10.1038/s41598-019-44615-3 - DOI - PMC - PubMed
-
- Bodini, B. , Khaleeli, Z. , Cercignani, M. , Miller, D. H. , Thompson, A. J. , & Ciccarelli, O. (2009). Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: An in vivo study with TBSS and VBM. Human Brain Mapping, 30, 2852–2861. 10.1002/hbm.20713 - DOI - PMC - PubMed
-
- Callaghan, M. F. , Freund, P. , Draganski, B. , Anderson, E. , Cappelletti, M. , Chowdhury, R. , … Weiskopf, N. (2014). Widespread age‐related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiology of Aging, 35, 1862–1872. 10.1016/j.neurobiolaging.2014.02.008 - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical