Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 25;12(47):52251-52270.
doi: 10.1021/acsami.0c14199. Epub 2020 Nov 6.

Functional Bio-inorganic Hybrids from Silicon Quantum Dots and Biological Molecules

Affiliations

Functional Bio-inorganic Hybrids from Silicon Quantum Dots and Biological Molecules

Christopher Jay T Robidillo et al. ACS Appl Mater Interfaces. .

Abstract

Quantum dots (QDs) are semiconductor nanoparticles that exhibit photoluminescent properties useful for applications in the field of diagnostics and medicine. Successful implementation of these QDs for bio-imaging and bio/chemical sensing typically involves conjugation to biologically active molecules for recognition and signal generation. Unfortunately, traditional and widely studied QDs are based upon heavy metals and other toxic elements (e.g., Cd- and Pb-based QDs), which precludes their safe use in actual biological systems. Silicon quantum dots (SiQDs) offer the same advantages as these heavy-metal-based QDs with the added benefits of nontoxicity and abundance. The preparation of functional bio-inorganic hybrids from SiQDs and biomolecules has lagged significantly compared to their traditional toxic counterparts because of the challenges associated with the synthesis of water-soluble SiQDs and their relative instability in aqueous environments. Advances in SiQD synthesis and surface functionalization, however, have made possible the preparation of functional bio-inorganic hybrids from SiQDs and biological molecules through different bioconjugation reactions. In this contribution, we review the various bioconjugate reactions by which SiQDs have been linked to biomolecules and implemented as platforms for bio-imaging and bio/chemical sensing. We also highlight the challenges that need to be addressed and overcome for these materials to reach their full potential. Lastly, we give prospective applications where this unique class of nontoxic and biocompatible materials can be of great utility in the future.

Keywords: bio-inorganic hybrids; bioconjugation; carbohydrate; deoxyribonucleic acid; protein; silicon quantum dots.

PubMed Disclaimer

LinkOut - more resources