Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Nov 25;18(45):9191-9209.
doi: 10.1039/d0ob01744b.

Acenes beyond organic electronics: sensing of singlet oxygen and stimuli-responsive materials

Affiliations
Review

Acenes beyond organic electronics: sensing of singlet oxygen and stimuli-responsive materials

Valentina Brega et al. Org Biomol Chem. .

Abstract

The spectroscopic, electronic, and geometrical properties of acenes have enabled their broad applicability in organic optoelectronics. Beyond these physical characteristics of acenes, acenes also offer characteristic and predictable reaction chemistry, especially their behavior as dienes in cycloaddition reactions. Although these cycloaddition reactions, especially those with singlet oxygen (1O2) as the dienophile, are detrimental for organic electronics, this reactivity has led to several different applications such as sensing of 1O2, the release of cytotoxic reactive oxygen species (ROS), and stimuli-responsive materials for drug delivery. The rational design of acenes in these chemically-responsive applications beyond organic optoelectronics requires an understanding of how chemical structure influences both the physical properties, such as quantum yield of emission, as well as the reactivity of acenes and their cycloadducts. Therefore, the objective of this review is to summarize how cycloaddition reactions of acenes have expanded their applications in different areas of materials chemistry, and in doing so inspire and inform the rational design of acene-based materials with applications beyond organic electronics.

PubMed Disclaimer

Publication types

LinkOut - more resources