Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr;39(2):133-145.
doi: 10.1007/s12640-020-00299-6. Epub 2020 Nov 6.

Amitriptyline Protects Against Lidocaine-induced Neurotoxicity in SH-SY5Y Cells via Inhibition of BDNF-mediated Autophagy

Affiliations

Amitriptyline Protects Against Lidocaine-induced Neurotoxicity in SH-SY5Y Cells via Inhibition of BDNF-mediated Autophagy

Honghong Zhang et al. Neurotox Res. 2021 Apr.

Abstract

Amitriptyline (AMI) is a traditional tricyclic antidepressant that has been proven to exhibit neuroprotective effects in various neurological disorders. However, the underlying mechanism by which AMI attenuates lidocaine-induced neurotoxicity remains poorly understood. Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin to neuronal development and survival in the brain, and recent studies have suggested that BDNF plays an important role in mediating lidocaine-induced neurotoxicity. The present study was performed to evaluate the protective effect of AMI against the neurotoxicity induced by lidocaine and to explore the role of BDNF-dependent autophagy in this process. The data showed that AMI pretreatment alleviated lidocaine-induced neurotoxicity, as evidenced by the restoration of cell viability, normalization of cell morphology, and reduction in the cell apoptosis index. In addition, autophagy inhibitor 3-methyladenine (3-MA) had a protective effect similar to that of AMI, but autophagy activator rapamycin eliminated the protective effect of AMI by suppressing mTOR activation. Moreover, at the molecular level, we found that AMI-mediated autophagy was involved in the expression of BDNF. The overexpression of BDNF or application of exogenous recombinant BDNF significantly suppressed autophagy and protected SH-SY5Y cells from apoptosis induced by Lido, whereas the neuroprotection of AMI was abolished by either knockdown of BDNF or use of a tropomyosin-related kinase B (TrkB) inhibitor ANA-12 in SH-SY5Y cells. Overall, our findings demonstrated that the protective effect of AMI against lidocaine-induced neurotoxicity correlated with inhibition of autophagy activity through upregulation of BDNF expression.

Keywords: Amitriptyline; Apoptosis; Autophagy; BDNF; Lidocaine.

PubMed Disclaimer

References

    1. Adembri C, Venturi L, Tani A, Chiarugi A, Gramigni E, Cozzi A, Pancani T, De Gaudio RA, Pellegrini-Giampietro DE (2006) Neuroprotective effects of propofol in models of cerebral ischemia: inhibition of mitochondrial swelling as a possible mechanism. Anesthesiology 104:80–89 - PubMed
    1. Dean L (2012) Amitriptyline therapy and CYP2D6 and CYP2C19 genotype. In: Pratt VM, McLeod HL, Rubinstein WS, Scott SA, Dean LC, Kattman BL, Malheiro AJ (eds) Medical genetics summaries. Bethesda (MD)
    1. Cazorla M, Premont J, Mann A, Girard N, Kellendonk C, Rognan D (2011) Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 121:1846–1857 - PubMed - PMC
    1. Chadwick W, Mitchell N, Caroll J, Zhou Y, Park SS, Wang L, Becker KG, Zhang Y, Lehrmann E, Wood WH 3rd, Martin B, Maudsley S (2011) Amitriptyline-mediated cognitive enhancement in aged 3xTg Alzheimer’s disease mice is associated with neurogenesis and neurotrophic activity. PLoS One 6:e21660 - PubMed - PMC
    1. Chen A, Xiong LJ, Tong Y, Mao M (2013) Neuroprotective effect of brain-derived neurotrophic factor mediated by autophagy through the PI3K/Akt/mTOR pathway. Mol Med Rep 8:1011–1016 - PubMed

MeSH terms

LinkOut - more resources