Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 19;124(46):9656-9664.
doi: 10.1021/acs.jpca.0c05909. Epub 2020 Nov 6.

Machine Learning Improves Trace Explosive Selectivity: Application to Nitrate-Based Explosives

Affiliations

Machine Learning Improves Trace Explosive Selectivity: Application to Nitrate-Based Explosives

Danny Fisher et al. J Phys Chem A. .

Abstract

Ion mobility spectrometry (IMS) is the method of choice to detect trace amounts of explosives in most airports and border crossing settings. For most explosives, the IMS detection limits are suitably low enough to meet security requirements. However, for some explosive families, the selectivity is not sufficient. One such family is nitrate-based explosives, where discrimination between various nitrate threats and ambient nitrates is challenging. Using a small database, machine learning methods were utilized to examine the extent of improvement in IMS selectivity for detection of nitrate-based explosives. Five classes were considered in this preliminary study: ammonium nitrate (AN), an ∼95:5 mixture of AN and fuel oil (ANFO), urea nitrate (UN), nitrate due to environmental pollution, and samples that did not contain any explosive (blanks). The preliminary results clearly show that the incorporation of machine learning methods can lead to a significant improvement in IMS selectivity.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources