Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 15:194:108372.
doi: 10.1016/j.neuropharm.2020.108372. Epub 2020 Nov 4.

Neuronal Bmi-1 is critical for melatonin induced ubiquitination and proteasomal degradation of α-synuclein in experimental Parkinson's disease models

Affiliations

Neuronal Bmi-1 is critical for melatonin induced ubiquitination and proteasomal degradation of α-synuclein in experimental Parkinson's disease models

Anup K Srivastava et al. Neuropharmacology. .

Abstract

Epigenetic polycomb repressor complex-1 subunit BMI-1 plays a pivotal role in the process of gene repression to maintain the self-renewal and differentiation state of neurogenic tissues. Accumulating reports links lower expression of BMI-1 fails to regulate the repression of anti-oxidant response genes disrupt mitochondrial homeostasis underlying neurodegeneration. Interestingly, this negative relation between BMI-1 function and neurodegeneration is distinct but has not been generalized as a potential biomarker particularly in Parkinson's disease (PD). Hyperphosphorylated BMI-1 undergoes canonical polycomb E3 ligase function loss, thereby leads to reduce monoubiquitylation of histone 2A at lysine 119 (H2AK119ub) corroborates cellular accumulation of α-synuclein protein phosphorylated at serine 129 (pα-SYN (S129). In general, neuroprotectant suppressing pα-SYN (S129) level turns ineffective upon depletion of neuronal BMI-1. However, it has been observed that our neuroprotectant exposure suppresses the cellular pα-SYN (S129) and restore the the BMI-1 expression level in neuronal tissues. The pharmacological inhibition and activation of proteasomal machinery promote the cellular accumulation and degradation of neuronal pα-SYN (S129), respectively. Furthermore, our investigation reveals that accumulated pα-SYN (S129) are priorly complexed with BMI-1 undergoes ubiquitin-dependent proteasomal degradation and established as key pathway for therpeutic effect in PD. These findings linked the unestablished non-canonical role of BMI-1 in the clearance of pathological α-SYN and suspected to be a novel therapeutic target in PD.

Keywords: Alpha-synuclein; BMI-1; Epigenetic polycomb repressor complex; Parkinson's disease; Ubiquitin-dependent proteasome pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types