Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements
- PMID: 33159058
- PMCID: PMC7648647
- DOI: 10.1038/s41467-020-19415-3
Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements
Abstract
Many prokaryotes employ CRISPR-Cas systems to combat invading mobile genetic elements (MGEs). In response, some MGEs have developed strategies to bypass immunity, including anti-CRISPR (Acr) proteins; yet the diversity, distribution and spectrum of activity of this immune evasion strategy remain largely unknown. Here, we report the discovery of new Acrs by assaying candidate genes adjacent to a conserved Acr-associated (Aca) gene, aca5, against a panel of six type I systems: I-F (Pseudomonas, Pectobacterium, and Serratia), I-E (Pseudomonas and Serratia), and I-C (Pseudomonas). We uncover 11 type I-F and/or I-E anti-CRISPR genes encoded on chromosomal and extrachromosomal MGEs within Enterobacteriaceae and Pseudomonas, and an additional Aca (aca9). The acr genes not only associate with other acr genes, but also with genes encoding inhibitors of distinct bacterial defense systems. Thus, our findings highlight the potential exploitation of acr loci neighborhoods for the identification of previously undescribed anti-defense systems.
Conflict of interest statement
J.B.-D. is a scientific advisory board member of SNIPR Biome and Excision Biotherapeutics and a scientific advisory board member and co-founder of Acrigen Biosciences. R.P.-R. is a scientific consultant and shareholder of Ancilia Inc. The remaining authors declare no competing interests.
Figures
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
