Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2020 Nov 9;18(1):311.
doi: 10.1186/s12916-020-01775-8.

Risk scores for predicting early antiretroviral therapy mortality in sub-Saharan Africa to inform who needs intensification of care: a derivation and external validation cohort study

Affiliations
Multicenter Study

Risk scores for predicting early antiretroviral therapy mortality in sub-Saharan Africa to inform who needs intensification of care: a derivation and external validation cohort study

Andrew F Auld et al. BMC Med. .

Abstract

Background: Clinical scores to determine early (6-month) antiretroviral therapy (ART) mortality risk have not been developed for sub-Saharan Africa (SSA), home to 70% of people living with HIV. In the absence of validated scores, WHO eligibility criteria (EC) for ART care intensification are CD4 < 200/μL or WHO stage III/IV.

Methods: We used Botswana XPRES trial data for adult ART enrollees to develop CD4-independent and CD4-dependent multivariable prognostic models for 6-month mortality. Scores were derived by rescaling coefficients. Scores were developed using the first 50% of XPRES ART enrollees, and their accuracy validated internally and externally using South African TB Fast Track (TBFT) trial data. Predictive accuracy was compared between scores and WHO EC.

Results: Among 5553 XPRES enrollees, 2838 were included in the derivation dataset; 68% were female and 83 (3%) died by 6 months. Among 1077 TBFT ART enrollees, 55% were female and 6% died by 6 months. Factors predictive of 6-month mortality in the derivation dataset at p < 0.01 and selected for the CD4-independent score included male gender (2 points), ≥ 1 WHO tuberculosis symptom (2 points), WHO stage III/IV (2 points), severe anemia (hemoglobin < 8 g/dL) (3 points), and temperature > 37.5 °C (2 points). The same variables plus CD4 < 200/μL (1 point) were included in the CD4-dependent score. Among XPRES enrollees, a CD4-independent score of ≥ 4 would provide 86% sensitivity and 66% specificity, whereas WHO EC would provide 83% sensitivity and 58% specificity. If WHO stage alone was used, sensitivity was 48% and specificity 89%. Among TBFT enrollees, the CD4-independent score of ≥ 4 would provide 95% sensitivity and 27% specificity, whereas WHO EC would provide 100% sensitivity but 0% specificity. Accuracy was similar between CD4-independent and CD4-dependent scores. Categorizing CD4-independent scores into low (< 4), moderate (4-6), and high risk (≥ 7) gave 6-month mortality of 1%, 4%, and 17% for XPRES and 1%, 5%, and 30% for TBFT enrollees.

Conclusions: Sensitivity of the CD4-independent score was nearly twice that of WHO stage in predicting 6-month mortality and could be used in settings lacking CD4 testing to inform ART care intensification. The CD4-dependent score improved specificity versus WHO EC. Both scores should be considered for scale-up in SSA.

Trial registration: ClinicalTrials.gov NCT02538952.

Keywords: Acquired immuno-deficiency syndrome; Antiretroviral therapy; Clinical scores; HIV; Mortality; Predictive models.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study profile
Fig. 2
Fig. 2
Model A (excluding CD4) development and performance in the internal derivation and validation datasets respectively
Fig. 3
Fig. 3
Model B (including CD4) development and performance in the internal derivation and validation datasets respectively
Fig. 4
Fig. 4
CD4-independent and CD4-dependent clinical score cards
Fig. 5
Fig. 5
Sensitivity, specificity, PPV, and NPV of clinical score in predicting 6-month mortality in XPRES dataset (N = 5553) and external validation TB Fast Track Dataset (N = 1077) for models A (excluding CD4) and B (including CD4)
Fig. 6
Fig. 6
Distribution of risk scores and 6-month mortality risk in the XPRES dataset (N = 5553) and external validation TB Fast Track Dataset (N = 1077) for models A (excluding CD4) and B (including CD4)
Fig. 7
Fig. 7
Survival curves stratified by risk scores in the XPRES dataset (N = 5553) and external validation TB Fast Track Dataset (N = 1077) for models A (excluding CD4) and B (including CD4)

References

    1. UNAIDS. AIDSinfo. Available at: http://aidsinfo.unaids.org/. Accessed 5 June 2020.
    1. Tanser F, Bärnighausen T, Grapsa E, Zaidi J, Newell ML. High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science. 2013;339(6122):966–71. - PMC - PubMed
    1. Vandormael A, Akullian A, Siedner M, de Oliveira T, Barnighausen T, Tanser F. Declines in HIV incidence among men and women in a South African population-based cohort. Nat Commun. 2019;10(1):5482. doi: 10.1038/s41467-019-13473-y. - DOI - PMC - PubMed
    1. Stover J, Bollinger L, Izazola JA, Loures L, DeLay P, Ghys PD, et al. What is required to end the AIDS epidemic as a public health threat by 2030? The cost and impact of the fast-track approach. PLoS One. 2016;11(5):e0154893. doi: 10.1371/journal.pone.0154893. - DOI - PMC - PubMed
    1. Gupta A, Nadkarni G, Yang WT, Chandrasekhar A, Gupte N, Bisson GP, et al. Early mortality in adults initiating antiretroviral therapy (ART) in low- and middle-income countries (LMIC): a systematic review and meta-analysis. PLoS One. 2011;6(12):e28691. doi: 10.1371/journal.pone.0028691. - DOI - PMC - PubMed

Publication types

Substances

Associated data