Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods
- PMID: 33162783
- PMCID: PMC7605744
- DOI: 10.1016/j.cej.2020.127575
Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods
Abstract
Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.
Keywords: AIV H5N1, Avian influenza; AIV, Avian influenza virus; ASFV, African swine fever virus; BVDV, Bovine viral diarrhea virus; CGV, Chikungunya viruses; CMV, Cucumber mosaic virus; COVID-19; CSFV, Classic swine fever virus; CV, Cyclic voltammetry; DAstV-1, Duck astrovirus 1; DAstV-2, Duck astrovirus 2; DENV, Dengue virus; DEV, Duck enteritis virus; DHAV-1, Duck hepatitis A virus 1; DHAV-3, Duck hepatitis A virus 3; DPV, Differential pulse voltammetry; DRV-1, Duck reovirus 1; DRV-2, Duck reovirus 2; Detection; EBV, Epstein-Barr virus; EIS, Electric impedance spectroscopy; EPC, External positive controls; EV, Human enterovirus; EV71, Human enterovirus 71; Electrochemical sensor; FMI SMOF, Fluorescence molecularly imprinted sensor based on a metal–organic framework; GCE, Glassy carbon electrode; GCFaV-1, Ginger chlorotic fleck associated virus 1; GCFaV-2, Ginger chlorotic fleck-associated virus 2; GEV VN-96, Gastroenteritis virus VN-96; GPV, Goose parvovirus; HHV, Human herpes virus 6; HIAV, Human influenza A viruses; HPB19, Human parvovirus B19; HSV, Herpes simplex; IAV, influenza A virus; IEA, Interdigitated electrode array; IMA, Interdigitated microelectrode array; INAA, Isothermal nucleic acid amplification-based; JEV, Japanese encephalitis virus; LAMP, Loop-Mediated Isothermal Amplification; LSV, Linear sweep voltammetry; MERS, Middle East respiratory syndrome; MIEC, Molecularly imprinted electrochemiluminescence; MNV, Murine norovirus; MeV, Measles virus; NNV, Nervous necrosis virus; Nanotechnology; PBoV, Porcine bocavirus; PCNAME, Pt-coated nanostructured alumina membrane electrode; PCR; PCRLFS, Polymerase Chain Reaction with a lateral flow strip with a lateral flow strip; PCV, Porcine circovirus 3; PEDV, Porcine epidemic diarrhoea virus; PRRSV, porcine reproductive and respiratory syndrome virus; PSV, Pseudorabies virus; RCA, Rolling circle amplification; RGO, Reduced graphene oxide; RT-LAMP-VF, RT-LAMP and a vertical flow visualization strip; RV, Rubella virus; SARS, Severe acute respiratory syndrome; SIVH1N1, Swine influenza virus; SWV, Square wave voltammetry; TGEV, transmissible gastroenteritis coronavirus; TMUV, Tembusu virus; USEGFET, Ultra-sensitive electrolyte-gated field-effect transistor; VZV, Varicella-zoster virus; VZV, varicella-Zoster virus; Viruses; ZV, Zika virus.
© 2020 Elsevier B.V. All rights reserved.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures












Similar articles
-
Establishment of a simultaneous detection method for ten duck viruses using MALDI-TOF mass spectrometry.J Virol Methods. 2019 Nov;273:113723. doi: 10.1016/j.jviromet.2019.113723. Epub 2019 Aug 17. J Virol Methods. 2019. PMID: 31430495 Free PMC article.
-
Development of a one-step multiplex qRT-PCR assay for the detection of African swine fever virus, classical swine fever virus and atypical porcine pestivirus.BMC Vet Res. 2022 Jan 18;18(1):43. doi: 10.1186/s12917-022-03144-4. BMC Vet Res. 2022. PMID: 35042532 Free PMC article.
-
SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges.Chem Eng J. 2021 Feb 1;405:126893. doi: 10.1016/j.cej.2020.126893. Epub 2020 Sep 4. Chem Eng J. 2021. PMID: 32901196 Free PMC article.
-
Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection.Int J Mol Sci. 2022 Dec 14;23(24):15922. doi: 10.3390/ijms232415922. Int J Mol Sci. 2022. PMID: 36555560 Free PMC article. Review.
-
Emergent Molecular Techniques Applied to the Detection of Porcine Viruses.Vet Sci. 2023 Oct 7;10(10):609. doi: 10.3390/vetsci10100609. Vet Sci. 2023. PMID: 37888561 Free PMC article. Review.
Cited by
-
A Short Review Comparing Carbon-Based Electrochemical Platforms With Other Materials For Biosensing SARS-Cov-2.ChemistrySelect. 2022 Oct 7;7(37):e202202465. doi: 10.1002/slct.202202465. Epub 2022 Oct 4. ChemistrySelect. 2022. PMID: 36711230 Free PMC article. Review.
-
Self-powered photoelectrochemical aptasensor based on AgInS2@Co/Ni-UiO-66@CDs photoelectrode for estradiosl detection.Mikrochim Acta. 2022 Aug 1;189(8):303. doi: 10.1007/s00604-022-05409-z. Mikrochim Acta. 2022. PMID: 35915284
-
Analysis of Recent Bio-/Nanotechnologies for Coronavirus Diagnosis and Therapy.Sensors (Basel). 2021 Feb 20;21(4):1485. doi: 10.3390/s21041485. Sensors (Basel). 2021. PMID: 33672772 Free PMC article. Review.
-
Ultrasensitive SARS-CoV-2 diagnosis by CRISPR-based screen-printed carbon electrode.Anal Chim Acta. 2022 Aug 15;1221:340120. doi: 10.1016/j.aca.2022.340120. Epub 2022 Jul 2. Anal Chim Acta. 2022. PMID: 35934402 Free PMC article.
-
Piezoelectric point-of-care biosensor for the detection of SARS-COV-2 (COVID-19) antibodies.Sens Biosensing Res. 2022 Aug;37:100510. doi: 10.1016/j.sbsr.2022.100510. Epub 2022 Jul 14. Sens Biosensing Res. 2022. PMID: 35855937 Free PMC article.
References
-
- D. P. Clark, N. J. Pazdernik, Viruses. Molecular Biology, 2nd edition, Academic Cell 2013, e517–e522.
-
- Kaya S.I., Karadurmus L., Ozcelikay G., Bakirhan N.K., Ozkan S.A. Electrochemical virus detections with nanobiosensors, Nanosensors for Smart Cities. Micro and Nano Technologies. 2020:303–326. doi: 10.1016/B978-0-12-819870-4.00017-7. - DOI
-
- H.R. Gelderblom, Structure and classification of viruses, Med. Microbiol. 4th edition, editor: Baron S, Galveston (TX): University of Texas Medical Branch at Galveston; 1996 http://www.ncbi.nlm.nih.gov/pubmed/21413309. - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous