Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 19;124(46):9617-9625.
doi: 10.1021/acs.jpca.0c06121. Epub 2020 Nov 9.

Using Mie Scattering to Determine the Wavelength-Dependent Refractive Index of Polystyrene Beads with Changing Temperature

Affiliations
Free article

Using Mie Scattering to Determine the Wavelength-Dependent Refractive Index of Polystyrene Beads with Changing Temperature

Megan R McGrory et al. J Phys Chem A. .
Free article

Abstract

Polystyrene beads are often used as test particles in aerosol science. Here, a contact-less technique is reported for determining the refractive index of a solid aerosol particle as a function of wavelength and temperature (20-234 °C) simultaneously. Polystyrene beads with a diameter of 2 μm were optically trapped in air in the central orifice of a ceramic heating element, and Mie spectroscopy was used to determine the radius and refractive index (to precisions of 0.8 nm and 0.0014) of eight beads as a function of heating and cooling. Refractive index, n, as a function of wavelength, λ (0.480-0.650 μm), and temperature, T, in centigrade, was found to be n = 1.5753 - (1.7336 × 10-4)T + (9.733 × 10-3-2 in the temperature range 20 < T < 100 °C and n = 1.5877 - (2.9739 × 10-4)T + (9.733 × 10-3-2 in the temperature range 100 < T < 234 °C. The technique represents a step change in measuring the refractive index of materials across an extended range of temperature and wavelength in an absolute manner and with high precision.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources