Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 1;320(3):H969-H979.
doi: 10.1152/ajpheart.00304.2020. Epub 2020 Nov 8.

Extracellular vesicles enriched with miR-150 released by macrophages regulates the TP53-IGF-1 axis to alleviate myocardial infarction

Affiliations
Free article

Extracellular vesicles enriched with miR-150 released by macrophages regulates the TP53-IGF-1 axis to alleviate myocardial infarction

Suxia Zheng et al. Am J Physiol Heart Circ Physiol. .
Free article

Retraction in

Abstract

Myocardial infarction (MI) is recognized as a major cause of death and disability around the world. Macrophage-derived extracellular vesicles (EVs) have been reportedly involved in the regulation of cellular responses to MI. Thus, we sought to clarify the mechanism by which macrophage-derived EVs regulate this process. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to determine microRNA-150 (miR-150) expression in an MI mouse model with ligation of the left anterior descending coronary artery (LAD) and in hypoxia/reoxygenation (H/R)-exposed cardiomyocytes. Bioinformatics analysis and dual luciferase reporter gene assay were adopted to identify the correlation of miR-150 with tumor protein 53 (TP53) expression in cardiomyocytes. Gain- and loss-of-function experiments were conducted in H/R-induced cardiomyocytes, cardiomyocytes incubated with EVs from miR-150 mimic-transfected macrophages, or MI-model mice treated with EVs from miR-150 mimic-transfected macrophages. hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining assays were used for detecting inflammatory infiltration and cell apoptosis. The release of lactate dehydrogenase (LDH) by dead cardiomyocytes was measured with an LDH kit, and the apoptosis-related proteins, Bax, and cleaved-caspase 3 were determined by Western blot analysis. miR-150 expression was downregulated in the infarcted cardiac tissues of MI mice. Macrophage-derived EVs could transfer miR-150 into cardiomyocytes, where it directly targeted and suppressed TP53. Furthermore, miR-150 suppressed phosphatase and tensin homology (PTEN) and activated p-Akt to upregulate IGF-1 expression. Furthermore, increased expression of EV-derived miR-150 prevented cardiomyocyte apoptosis in vitro, as evidenced by downregulated Bax and cleaved-caspase 3 and upregulated Bcl2 and alleviated MI in vivo. In conclusion, our study demonstrates the cardioprotective effect of macrophage-derived EV-miR-150 on MI-induced heart injury through negatively regulating the TP53-IGF-1 signaling pathway.NEW & NOTEWORTHY miR-150 is expressed at a low level in cardiac tissues after myocardial infarction. Macrophages-derived EVs transfer miR-150 to cardiomyocytes. miR-150 directly targets TP53. miR-150 elevation regulates TP53-IGF-1 axis to reduce cardiomyocyte apoptosis. EV-derived miR-150 could be a potential therapeutic target for myocardial infarction.

Keywords: TP53; extracellular vesicles; insulin-like growth factor-1; microRNA-150; myocardial infarction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources