Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 25;68(47):13791-13797.
doi: 10.1021/acs.jafc.0c04798. Epub 2020 Nov 9.

Rational Design of Disulfide Bonds for Enhancing the Thermostability of the 1,4-α-Glucan Branching Enzyme from Geobacillus thermoglucosidans STB02

Affiliations

Rational Design of Disulfide Bonds for Enhancing the Thermostability of the 1,4-α-Glucan Branching Enzyme from Geobacillus thermoglucosidans STB02

Caiming Li et al. J Agric Food Chem. .

Abstract

Disulfide bonds play crucial roles in thermostabilization, recognition, or activation of proteins. They are vital in maintaining the respective conformations of globular structures, thereby enhancing thermostability. Bioinformatic approaches provide practical strategies to build disulfide bonds based on structural information. We constructed nine mutants by rational analysis of the 1,4-α-glucan branching enzyme (EC 2.4.1.18) from Geobacillus thermoglucosidans STB02, which catalyzes the synthesis of α-1,6-glucosidic bonds by acting on α-(1,4) and/or α-(1,6) glucosidic linkages. Four of the mutations enhanced thermostability, and five of them had adverse or negligible effects on stability. Circular dichroism spectra and intrinsic fluorescence analysis showed that introducing disulfide bonds might only affect secondary structures. The results also demonstrated that the distances of Cα carbons and thiol groups, as well as the sequence between the two cysteines, need to be considered when designing disulfide bonds.

Keywords: 1,4-α-glucan branching enzyme; bioinformatics; disulfide bond; sequence gap; thermostability.

PubMed Disclaimer

Supplementary concepts

LinkOut - more resources