Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May;22(5):487-497.
doi: 10.1016/j.jpain.2020.10.006. Epub 2020 Nov 6.

Does Threat Enlarge Nociceptive Reflex Receptive Fields?

Affiliations
Free article

Does Threat Enlarge Nociceptive Reflex Receptive Fields?

Edward W Lannon et al. J Pain. 2021 May.
Free article

Abstract

Threat-induced pain modulation can increase survival by amplifying physiological and behavioral reactions toward danger. Threat can also modulate spinal nociception, suggesting engagement of endogenous top-down circuitry. A unique method to assess spinal nociception is via reflex receptive fields (RRF) associated with the nociceptive withdrawal reflex (NWR, a protective spinally-mediated reflex). The size of nociceptive RRFs can be modulated by top-down circuitry with the enlargement of RRFs related to increased spinal nociception. Threat has been previously shown to enhance pain and spinal nociception, but the relationship between threat and RRFs has not been investigated. The present study investigated this issue in 25 healthy individuals. RRFs were determined from NWRs measured by electromyography of the tibialis anterior following electrocutaneous stimulations. RRFs and pain were assessed during periods in which participants were under threat of unpredictable painful abdominal stimulations and when they were not under threat. Results indicated that threat periods led to significantly higher pain, larger nociceptive RRFs and NWR magnitudes. These findings imply that threat produces changes in protective reflexes related to spinal nociceptive sensitivity and increased pain perception. This is likely mediated by top-down circuitry that enhances dorsal horn nociceptive neurons by enlarging RRFs and amplifying ascending pain signals. PERSPECTIVE: This article presents the enlargement of RRF during periods of threat. The results from this study may help clarify the mechanism underlining emotional modulation of spinal nociception.

Keywords: Pain; anxiety; nociception; reflex receptive fields; spinal nociception.

PubMed Disclaimer

Publication types