Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Mar;71(3):122-137.
doi: 10.1055/a-1296-7870. Epub 2020 Nov 9.

Molecular Targets and Nanoparticulate Systems Designed for the Improved Therapeutic Intervention in Glioblastoma Multiforme

Affiliations
Review

Molecular Targets and Nanoparticulate Systems Designed for the Improved Therapeutic Intervention in Glioblastoma Multiforme

Md Habban Akhter et al. Drug Res (Stuttg). 2021 Mar.

Abstract

Glioblastoma multiforme (GBM) is the most aggressive and fatal CNS related tumors, which is responsible for about 4% of cancer-related deaths. Current GBM therapy includes surgery, radiation, and chemotherapy. The effective chemotherapy of GBM is compromised by two barriers, i. e., the blood-brain barrier (BBB) and the blood tumor barrier (BTB). Therefore, novel therapeutic approaches are needed. Nanoparticles are one of the highly efficient drug delivery systems for a variety of chemotherapeutics that have gained massive attention from the last three decades. Perfectly designed nanoparticles have the ability to cross BBB and BTB and precisely deliver the chemotherapeutics to GBM tissue/cells. Nanoparticles can encapsulate both hydrophilic and lipophilic drugs, genes, proteins, and peptides, increase the stability of drugs by protecting them from degradation, improve plasma half-life, reduce adverse effects and control the release of drugs/genes at the desired site. This review focussed on the different signaling pathways altered in GBM cells to understand the rationale behind selecting new therapeutic targets, challenges in the drug delivery to the GBM, various transport routes in brain delivery, and recent advances in targeted delivery of different drug and gene loaded various lipidic, polymeric and inorganic nanoparticles in the effective management of GBM.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest. The authors alone are responsible for the content and writing of this article.

MeSH terms

LinkOut - more resources