Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2020 Nov 10;9(1):185.
doi: 10.1186/s13756-020-00849-9.

Impact of an e-learning module on personal protective equipment knowledge in student paramedics: a randomized controlled trial

Affiliations
Randomized Controlled Trial

Impact of an e-learning module on personal protective equipment knowledge in student paramedics: a randomized controlled trial

Laurent Suppan et al. Antimicrob Resist Infect Control. .

Abstract

Background: Prehospital professionals such as emergency physicians or paramedics must be able to choose and adequately don and doff personal protective equipment (PPE) in order to avoid COVID-19 infection. Our aim was to evaluate the impact of a gamified e-learning module on adequacy of PPE in student paramedics.

Methods: This was a web-based, randomized 1:1, parallel-group, triple-blind controlled trial. Student paramedics from three Swiss schools were invited to participate. They were informed they would be presented with both an e-learning module and an abridged version of the current regional prehospital COVID-19 guidelines, albeit not in which order. After a set of 22 questions designed to assess baseline knowledge, the control group was shown the guidelines before answering a set of 14 post-intervention questions. The e-learning group was shown the gamified e-learning module right after the guidelines, and before answering post-intervention questions. The primary outcome was the difference in the percentage of adequate choices of PPE before and after the intervention.

Results: The participation rate was of 71% (98/138). A total of 90 answer sets was analyzed. Adequate choice of PPE increased significantly both in the control (50% [33;83] vs 25% [25;50], P = .013) and in the e-learning group (67% [50;83] vs 25% [25;50], P = .001) following the intervention. Though the median of the difference was higher in the e-learning group, there was no statistically significant superiority over the control (33% [0;58] vs 17% [- 17;42], P = .087). The e-learning module was of greatest benefit in the subgroup of student paramedics who were actively working in an ambulance company (42% [8;58] vs 25% [- 17;42], P = 0.021). There was no significant effect in student paramedics who were not actively working in an ambulance service (0% [- 25;33] vs 17% [- 8;50], P = .584).

Conclusions: The use of a gamified e-learning module increases the rate of adequate choice of PPE only among student paramedics actively working in an ambulance service. In this subgroup, combining this teaching modality with other interventions might help spare PPE and efficiently protect against COVID-19 infection.

Keywords: Covid-19; Emergency medical services; Personal protective equipment; Randomized controlled trial; Student paramedics; e-learning.

PubMed Disclaimer

Conflict of interest statement

Most authors (except RL) participated in the creation of the e-learning module. Nevertheless, as this module is freely available online (in both web and SCORM versions), and as the authors have previously reported mostly negative results in a previous study designed to evaluate the impact of the same module [12], they do not acknowledge any conflict of interest.

Figures

Fig. 1
Fig. 1
Study design, adapted from Suppan L. et al. [12]
Fig. 2
Fig. 2
Study flowchart
Fig. 3
Fig. 3
Adequate choice of personal protective equipment among a paramedic students actively working in an ambulance service and b paramedic students who were not working in an ambulance service

Similar articles

Cited by

References

    1. Ting DSW, Carin L, Dzau V, Wong TY. Digital technology and COVID-19. Nat Med. 2020;26:459–461. doi: 10.1038/s41591-020-0824-5. - DOI - PMC - PubMed
    1. Pérez Sust P, Solans O, Fajardo JC, Medina Peralta M, Rodenas P, Gabaldà J, et al. Turning the crisis into an opportunity: digital health strategies deployed during the COVID-19 outbreak. JMIR Public Health Surveill. 2020;6:19106. doi: 10.2196/19106. - DOI - PMC - PubMed
    1. Vilendrer S, Patel B, Chadwick W, Hwa M, Asch S, Pageler N, et al. Rapid deployment of inpatient telemedicine in response to COVID-19 across three health systems. J Am Med Inform Assoc. 2020; https://www.ncbi.nlm.nih.gov/pubmed/32495830. - PMC - PubMed
    1. Mann DM, Chen J, Chunara R, Testa PA, Nov O. COVID-19 transforms health care through telemedicine: evidence from the field. J Am Med Inform Assoc. 2020; https://www.ncbi.nlm.nih.gov/pubmed/32324855. - PMC - PubMed
    1. Holmes JL, Brake S, Docherty M, Lilford R, Watson S. Emergency ambulance services for heart attack and stroke during UK’s COVID-19 lockdown. Lancet (Lond Engl) 2020;395:e93–e94. doi: 10.1016/S0140-6736(20)31031-X. - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources