Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 25;5(11):3457-3464.
doi: 10.1021/acssensors.0c01404. Epub 2020 Nov 10.

Creation of a Nanobody-Based Fluorescent Immunosensor Mini Q-body for Rapid Signal-On Detection of Small Hapten Methotrexate

Affiliations

Creation of a Nanobody-Based Fluorescent Immunosensor Mini Q-body for Rapid Signal-On Detection of Small Hapten Methotrexate

Akihito Inoue et al. ACS Sens. .

Abstract

"Quenchbody (Q-body)" is a quench-based fluorescent biosensor labeled with a fluorescent dye near the antigen-binding site of an antibody. Q-bodies can detect a range of target molecules quickly by simply mixing with a sample. However, the development of Q-bodies using VHH-nanobodies derived from camelid heavy-chain antibodies has not been reported despite their favorable characteristics. Here, we report a "mini Q-body" that can detect the chemotherapy agent methotrexate (MTX) by using anti-MTX nanobody. Three kinds of constructs each encoding an N-terminal Cys-tag and anti-MTX VHH gene with a different length of linker (GGGS)n (n = 0, 2, and 4) between them were prepared followed by the expression in Escherichia coli and labeling with several dye maleimides. When the fluorescence intensities in the presence of varied MTX concentrations were measured, TAMRA-labeled nanobodies showed a higher response than ATTO520- or R6G-labeled ones. Especially, TAMRA C6-labeled mini Q-body with no linker showed the highest response of ∼6-fold and a low detection limit of 0.56 nM. When each Trp residue in the mini Q-body was mutated to address the quenching mechanism, the major role of Trp34 at CDR1 in quenching was revealed. Furthermore, the mini Q-body could detect MTX in 50% human serum with a low detection limit of 1.72 nM, showing its applicability to therapeutic drug monitoring. This study is expected to become the basis of the construction of highly responsive mini Q-bodies for sensitive detection of many molecules from small haptens to larger proteins, which will lead to broader applications such as point-of-care tests.

Keywords: dihydrofolate reductase; immunosensor; nanobody (VHH); photoinduced electron transfer; point-of-care test; quenchbody (Q-body).

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources