Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Nov 8;21(21):8368.
doi: 10.3390/ijms21218368.

Dietary Carbohydrates and Lipids in the Pathogenesis of Leaky Gut Syndrome: An Overview

Affiliations
Review

Dietary Carbohydrates and Lipids in the Pathogenesis of Leaky Gut Syndrome: An Overview

Agata Binienda et al. Int J Mol Sci. .

Abstract

This review summarizes the recent knowledge on the effects of dietary carbohydrates and lipids on the pathophysiology of leaky gut syndrome (LGS). Alterations in intestinal barrier permeability may lead to serious gastrointestinal (GI) disorders. LGS is caused by intestinal hyperpermeability due to changes in the expression levels and functioning of tight junctions. The influence of dietary habits on intestinal physiology is clearly visible in incidence rates of intestinal diseases in industrial and developing countries. Diseases which are linked to intestinal hyperpermeability tend to localize to Westernized countries, where a diet rich in fats and refined carbohydrates predominates. Several studies suggest that fructose is one of the key carbohydrates involved in the regulation of the intestinal permeability and its overuse may cause harmful effects, such as tight junction protein dysfunction. On the other hand, short chain fatty acids (mainly butyrate) at appropriate concentrations may lead to the reduction of intestinal permeability, which is beneficial in LGS. However, long chain fatty acids, including n-3 and n-6 polyunsaturated fatty acids have unclear properties. Some of those behave as components untightening and tightening the intestinal membrane.

Keywords: carbohydrates; leaky gut syndrome; lipids.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
An overview on the effect of various components of diet on intestinal epithelium permeability.

References

    1. Bischoff S.C., Barbara G., Buurman W., Ockhuizen T., Schulzke J.D., Serino M., Tilg H., Watson A., Wells J.M. Intestinal permeability—A new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. doi: 10.1186/s12876-014-0189-7. - DOI - PMC - PubMed
    1. Buckley A., Turner J.R. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb. Perspect. Biol. 2018;10:a029314. doi: 10.1101/cshperspect.a029314. - DOI - PMC - PubMed
    1. Johansson M.E.V., Hansson G.C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 2016;16:639–649. doi: 10.1038/nri.2016.88. - DOI - PMC - PubMed
    1. Van der Sluis M., De Koning B.A.E., De Bruijn A.C.J.M., Velcich A., Meijerink J.P.P., Van Goudoever J.B., Büller H.A., Dekker J., Van Seuningen I., Renes I.B., et al. Muc2-Deficient Mice Spontaneously Develop Colitis, Indicating That MUC2 Is Critical for Colonic Protection. Gastroenterology. 2006;131:117–129. doi: 10.1053/j.gastro.2006.04.020. - DOI - PubMed
    1. Velcich A., Yang W.C., Heyer J., Fragale A., Nicholas C., Viani S., Kucherlapati R., Lipkin M., Yang K., Augenlicht L. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 2002;295:1726–1729. doi: 10.1126/science.1069094. - DOI - PubMed

MeSH terms