Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 15:11:567710.
doi: 10.3389/fimmu.2020.567710. eCollection 2020.

Is Cross-Reactive Immunity Triggering COVID-19 Immunopathogenesis?

Affiliations

Is Cross-Reactive Immunity Triggering COVID-19 Immunopathogenesis?

Alberto Beretta et al. Front Immunol. .

Abstract

The serological responses to both SARS-CoV-1 and SARS-CoV-2 virus have some unique characteristics that suggest cross-reactive priming by other human coronaviruses (hCoVs). The early kinetics and magnitude of these responses are, in some cases, associated with worse clinical outcomes in SARS and COVID-19. Cross-reactive hCoV antibody responses have been detected in both SARS and COVID-19 patients. There is also evidence that pre-existing T cell immunity to common cold coronaviruses can prime the response to SARS-CoV-2. Studies in non-human primates show that SARS-CoV-1 S-protein vaccine-induced antibodies are associated with acute lung injury in macaques challenged with SARS-CoV-1. Here we discuss the potential of cross-reactive immunity to drive the immunopathogenesis of COVID-19 and its implications for current efforts to develop immune-based therapies and vaccines.

Keywords: COVID-19; SARS-CoV-2; antibody-dependent enhancement; cross-reactivity; human coronaviruses; immunopathogenesis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Illustrates the potential effects of an antibody response to infection by a common human coronavirus (Ab hCoVs, red line point 1) generated prior to SARS-CoV-2 infection and the induction of SARS-CoV-2 antibodies (blue line point 2) that cross-react with hCoVs. According to this hypothesis, in the absence of a previous hCoV infection, the antibody response to SARS-CoV-2 would follow a slower kinetics with a peak following that of viral replication, thus inducing a mild to moderate disease (lower panel). In contrast, a pre-existing antibody response to hCoVs would be followed by a very rapid (anamnestic) increase in SARS-CoV-2 antibodies that would precede the peak of viral replication (upper panel), thus inducing conditions for antibody-dependent enhancement or immunopathology by other antibody-dependent mechanisms leading to severe disease.

References

    1. Borchering RK, Huang AT, Mier Y.T.-R.L., Rojas DP, Rodriguez-Barraquer I, Katzelnick LC, et al. Impacts of Zika emergence in Latin America on endemic dengue transmission. Nat Commun (2019) 10:5730. 10.1038/s41467-019-13628-x - DOI - PMC - PubMed
    1. He D, Lui R, Wang L, Tse CK, Yang L, Stone L. Global Spatio-temporal Patterns of Influenza in the Post-pandemic Era. Sci Rep (2015) 5:11013. 10.1038/srep11013 - DOI - PMC - PubMed
    1. Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J Virol (2020) 94:e02015–19. 10.1128/JVI.02015-19 - DOI - PMC - PubMed
    1. Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun (2014) 451:208–14. 10.1016/j.bbrc.2014.07.090 - DOI - PMC - PubMed
    1. Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng BH, et al. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother (2016) 12:2351–6. 10.1080/21645515.2016.1177688 - DOI - PMC - PubMed

Publication types

MeSH terms