Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 14:10:564521.
doi: 10.3389/fonc.2020.564521. eCollection 2020.

Case Report: Late Onset of Myelodysplastic Syndrome From Donor Progenitor Cells After Allogeneic Stem Cell Transplantation. Which Lessons Can We Draw From the Reported Case?

Affiliations

Case Report: Late Onset of Myelodysplastic Syndrome From Donor Progenitor Cells After Allogeneic Stem Cell Transplantation. Which Lessons Can We Draw From the Reported Case?

Mirko Farina et al. Front Oncol. .

Abstract

Background: Myelodysplastic syndromes and acute leukemias after allogeneic stem cell transplantation (allo-SCT) are mainly caused by recurrence of the primitive leukemic clones. More rarely, they originate from donor hematopoietic stem cells, developing the so-called donor cell leukemia (DCL) or myelodysplastic syndromes (DC-MDSs). DCL and DC-MDS can be considered as an in vivo model of leukemogenesis, and even if the pathogenetic mechanisms remain speculative, a genetic predisposition of donor progenitor cells, an altered host microenvironment, and the impairment of immune surveillance are considered the main causes.

Case presentation: We report a case of DC-MDS diagnosed 5 years after an allo-SCT from a matched related donor (patient's sister) in a patient with Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (Ph+ B-ALL). The sex-mismatch allowed us to identify the donor cell origin. At the onset, the DC-MDS was characterized by chromosome seven monosomy and NRAS, RUNX1, and BCOR mutations. Because of a familiar history of colorectal neoplasia and the variant allele frequency (VAF) of NRAS mutation at the onset, this mutation was searched on germline DNA in both the donor and the recipient, but the result was negative. Moreover, after transplant (+4 months), the patient developed severe and long-lasting chronic graft-versus-host disease (cGVHD), requiring multiple lines of treatments. Because of the severe immunosuppression, recurrent infections occurred and, lately, the patient died due to septic shock.

Conclusion: This case report highlights the need, whenever possible, to evaluate the donor origin of the posttransplant myelodysplasia and acute leukemias. The potential key role of the impaired immune surveillance and of long-lasting immunosuppression appears to be emerging in the development of this case of DC-MDS. Finally, this case reminds the importance to investigate the familiar genetic predisposition in donors with a familiar history of neoplasia.

Keywords: donor cell myelodysplasia; immunosuppression; immunosurveillance; leukemogenesis; stem cells; transplant.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Patient’s timeline. At the top, the main treatments that the patient has received, with a focus on the anti-graft-versus-host disease (GVHD) therapies. Then, the blue arrow represents the timeline. In the red rectangles, the main diagnosis that the patient has received and the biological characteristics [Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (Ph+ B-ALL) and donor cell myelodysplastic syndrome (DC-MDS)]. In green, the persistence of the complete response (CR) over time, even after the DC-MDS onset (red star). K, karyotype; IP, immunophenotype.

Similar articles

Cited by

References

    1. Kahl C, Storer BE, Sandmaier BM, Mielcarek M, Maris MB, Blume KG, et al. Relapse risk in patients with malignant diseases given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood. (2007) 110:2744–8. 10.1182/blood-2007-03-078592 - DOI - PMC - PubMed
    1. Kröger N, Brand R, van Biezen A, Zander A, Dierlamm J, Niederwieser D, et al. Risk factors for therapy-related myelodysplastic syndrome and acute myeloid leukemia treated with allogeneic stem cell transplantation. Haematologica. (2009) 94:542–9. 10.3324/haematol.2008.000927 - DOI - PMC - PubMed
    1. Orciuolo E, Azzara A, Bandini G, Galimberti S, Bonifazi F, Fazzi R, et al. Contemporaneous appearance, 18 years after allogeneic bone marrow transplantation, of myelodysplastic syndrome in the patient and the donor. Bone Marrow Transplant. (2004) 33:859–61. 10.1038/sj.bmt.1704417 - DOI - PubMed
    1. Shah NN, Bacher U, Fry T, Calvo KR, Stetler-Stevenson M, Arthur DC, et al. Myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation: Diagnostic and therapeutic challenges. Am J Hematol. (2012) 87:916–22. 10.1002/ajh.23174 - DOI - PMC - PubMed
    1. Torra OS, Loeb KR. Donor cell-derived leukemia and myelodysplastic neoplasm: Unique forms of leukemia. Am J Clin Pathol. (2011) 135:501–4. 10.1309/AJCPXW8DKEG5QMTB - DOI - PubMed