Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan:262:128390.
doi: 10.1016/j.chemosphere.2020.128390. Epub 2020 Sep 21.

Hydroxylamine driven advanced oxidation processes for water treatment: A review

Affiliations
Review

Hydroxylamine driven advanced oxidation processes for water treatment: A review

Jiebin Duan et al. Chemosphere. 2021 Jan.

Abstract

Hydroxylamine (HA) driven advanced oxidation processes (HAOPs) for water treatment have attracted extensive attention due to the acceleration of reactive intermediates generation and the improvement on the elimination effectiveness of target contaminants. In this review, HAOPs were categorized into three parts: (1) direct reaction of HA with oxidants (e.g., hydrogen peroxide (H2O2), peroxymonosulfate (PMS), ozone (O3), ferrate (Fe(VI)), periodate (IO4-)); (2) HA driven homogeneous Fenton/Fenton-like system (Fe(II)/peroxide/HA system, Cu(II)/O2/HA system, Cu(II)/peroxide/HA system, Ce(IV)/H2O2/HA system); (3) HA driven heterogeneous Fe/Cu-Fenton/Fenton-like system (iron-bearing material/peroxide/HA system, copper-bearing material/peroxide/HA system, bimetallic composite/peroxide/HA system). Degradation efficiency of the target pollutant, reactive intermediates, and effective pH range of various HAOPs were summarized. Further, corresponding reaction mechanism was elaborated. For the direct reaction of HA with oxidants, improvement of pollutants degradation was achieved through the generation of secondary reactive intermediates which had higher reactivity compared with the parent oxidant. For HA driven homogeneous and heterogeneous Fe/Cu-Fenton/Fenton-like system, improvement of pollutants degradation was achieved mainly via the acceleration of redox cycle of Fe(III)/Fe(II) or Cu(II)/Cu(I) and subsequent generation of reactive intermediates, which avoided the drawbacks of classical Fenton/Fenton-like system. In addition, HA driven homogeneous Fe/Cu-Fenton/Fenton-like system with heterogeneous counterpart were compared. Further, formation of oxidation products from HA in various HAOPs was summarized. Finally, the challenges and prospects in this field were discussed.

Keywords: Direct oxidation; Heterogeneous Fe/cu-Fenton/Fenton-like system; Homogeneous Fe/cu-Fenton/Fenton-like system; Hydroxylamine (HA); Pollutants elimination.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources