Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Nov 12;19(1):160.
doi: 10.1186/s12943-020-01278-3.

Exosome-based immunotherapy: a promising approach for cancer treatment

Affiliations
Review

Exosome-based immunotherapy: a promising approach for cancer treatment

Zhijie Xu et al. Mol Cancer. .

Abstract

In the era of the rapid development of cancer immunotherapy, there is a high level of interest in the application of cell-released small vesicles that stimulate the immune system. As cell-derived nanovesicles, exosomes show great promise in cancer immunotherapy because of their immunogenicity and molecular transfer function. The cargoes carried on exosomes have been recently identified with improved technological advances and play functional roles in the regulation of immune responses. In particular, exosomes derived from tumor cells and immune cells exhibit unique composition profiles that are directly involved in anticancer immunotherapy. More importantly, exosomes can deliver their cargoes to targeted cells and thus influence the phenotype and immune-regulation functions of targeted cells. Accumulating evidence over the last decade has further revealed that exosomes can participate in multiple cellular processes contributing to cancer development and therapeutic effects, showing the dual characteristics of promoting and suppressing cancer. The potential of exosomes in the field of cancer immunotherapy is huge, and exosomes may become the most effective cancer vaccines, as well as targeted antigen/drug carriers. Understanding how exosomes can be utilized in immune therapy is important for controlling cancer progression; additionally, exosomes have implications for diagnostics and the development of novel therapeutic strategies. This review discusses the role of exosomes in immunotherapy as carriers to stimulate an anti-cancer immune response and as predictive markers for immune activation; furthermore, it summarizes the mechanism and clinical application prospects of exosome-based immunotherapy in human cancer.

Keywords: Cancer immunotherapy; Cancer vaccines; Clinical implications; Exosomes; Immune cells.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Regulatory mechanisms of exosomes released by different cells on immune cells. Exosomes’ entry and exit into cells is indicated by black dotted lines. Exosomes are represented with the same color as the host cell. OE: overexpression. KD: knock-down
Fig. 2
Fig. 2
The immune stimulatory and suppressive effects of cells-derived exosomes. This schematic displays the underlying mechanisms and functions of exosomes released from tumor cells and immune cells in the regulation of immune responses in tumor-bearing hosts

Similar articles

Cited by

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. - PubMed
    1. Subedi P, Nembrini S, An Q, Zhu Y, Peng H, Yeh F, Cole SA, Rhoades DA, Lee ET, Zhao J. Telomere length and cancer mortality in American Indians: the Strong Heart Study. Geroscience. 2019;41:351–361. doi: 10.1007/s11357-019-00080-4. - DOI - PMC - PubMed
    1. Csiszar A, Balasubramanian P, Tarantini S, Yabluchanskiy A, Zhang XA, Springo Z, Benbrook D, Sonntag WE, Ungvari Z. Chemically induced carcinogenesis in rodent models of aging: assessing organismal resilience to genotoxic stressors in geroscience research. Geroscience. 2019;41:209–227. doi: 10.1007/s11357-019-00064-4. - DOI - PMC - PubMed
    1. Yu WD, Sun G, Li J, Xu J, Wang X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 2019;452:66–70. doi: 10.1016/j.canlet.2019.02.048. - DOI - PubMed
    1. Sharma RA, Plummer R, Stock JK, Greenhalgh TA, Ataman O, Kelly S, Clay R, Adams RA, Baird RD, Billingham L, et al. Clinical development of new drug-radiotherapy combinations. Nat Rev Clin Oncol. 2016;13:627–642. doi: 10.1038/nrclinonc.2016.79. - DOI - PubMed

Publication types