Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 12;10(1):399.
doi: 10.1038/s41398-020-01084-x.

Key role for lipids in cognitive symptoms of schizophrenia

Affiliations

Key role for lipids in cognitive symptoms of schizophrenia

Dorien A Maas et al. Transl Psychiatry. .

Abstract

Schizophrenia (SZ) is a psychiatric disorder with a convoluted etiology that includes cognitive symptoms, which arise from among others a dysfunctional dorsolateral prefrontal cortex (dlPFC). In our search for the molecular underpinnings of the cognitive deficits in SZ, we here performed RNA sequencing of gray matter from the dlPFC of SZ patients and controls. We found that the differentially expressed RNAs were enriched for mRNAs involved in the Liver X Receptor/Retinoid X Receptor (LXR/RXR) lipid metabolism pathway. Components of the LXR/RXR pathway were upregulated in gray matter but not in white matter of SZ dlPFC. Intriguingly, an analysis for shared genetic etiology, using two SZ genome-wide association studies (GWASs) and GWAS data for 514 metabolites, revealed genetic overlap between SZ and acylcarnitines, VLDL lipids, and fatty acid metabolites, which are all linked to the LXR/RXR signaling pathway. Furthermore, analysis of structural T1-weighted magnetic resonance imaging in combination with cognitive behavioral data showed that the lipid content of dlPFC gray matter is lower in SZ patients than in controls and correlates with a tendency towards reduced accuracy in the dlPFC-dependent task-switching test. We conclude that aberrations in LXR/RXR-regulated lipid metabolism lead to a decreased lipid content in SZ dlPFC that correlates with reduced cognitive performance.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1. Expression of LXR/RXR-related mRNAs in SZ vs. control dlPFC gray and white matter.
a Normalized mRNA expression of angiotensinogen (Agt), apolipoprotein C2 (Apoc2), and complement 4b (C4b) in SZ vs. control dlPFC gray matter. These mRNAs are components of the canonical pathway “LXR/RXR activation” in the Ingenuity pathway analysis. b Normalized mRNA expression of the LXR/RXR signaling cascade components Liver X receptor β (Lxrβ), retinoid X receptor β (Rxrβ), ATP-binding cassette transporter A1 (Abca1), peripheral myelin protein 22 (Pmp22), apolipoprotein E (ApoE), and sterol regulatory element-binding protein 1 (SREBP1) in SZ vs. control dlPFC gray matter. c, d Normalized mRNA expression of the same genes as in a and b in the white matter of dlPFC. n = 4 samples per group, #p < 0.1, *p < 0.05 in independent samples T-test.
Fig. 2
Fig. 2. MP-RAGE signal in SZ and control dlPFC gray matter and correlation with task-switching accuracy.
a Left: schematic representation of the dlPFC gray matter in the left and right brain hemispheres. Right: average MP-RAGE signal from the left and right dlPFC gray matter in SZ versus control (CON). **p < 0.001 in a linear model corrected for sex, age, motion, and scanning site. b Scatter plot of the accuracy in the task-switching test and the MP-RAGE signal from the dlPFC gray matter in the left and right hemisphere of SZ patients.
Fig. 3
Fig. 3. Molecular pathways involving LXR/RXR signaling, acylcarnitines, VLDL lipids, and fatty acid metabolites.
Dark green rectangles represent genes upregulated in SZ dlPFC. Light green ovals represent lipid-related metabolites that share significant genetic etiology with SZ. Arrows indicate the nature of molecular interactions (see legend in the figure for details). References,,– have been used to construct the molecular pathways.

Similar articles

Cited by

References

    1. Modai S, Shomron N. Molecular risk factors for schizophrenia. Trends Mol. Med. 2016;22:242–253. doi: 10.1016/j.molmed.2016.01.006. - DOI - PubMed
    1. Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophrenia Res. 2009;110:1–23. doi: 10.1016/j.schres.2009.03.005. - DOI - PubMed
    1. Arndt S, Andreasen NC, Flaum M, Miller D, Nopoulos P. A longitudinal study of symptom dimensions in schizophrenia. Prediction and patterns of change. Arch. Gen. Psychiatry. 1995;52:352–360. doi: 10.1001/archpsyc.1995.03950170026004. - DOI - PubMed
    1. Fioravanti M, Carlone O, Vitale B, Cinti ME, Clare L. A meta-analysis of cognitive deficits in adults with a diagnosis of schizophrenia. Neuropsychol. Rev. 2005;15:73–95. doi: 10.1007/s11065-005-6254-9. - DOI - PubMed
    1. Lewis R. Should cognitive deficit be a diagnostic criterion for schizophrenia? J. Psychiatry Neurosci. 2004;29:102–113. - PMC - PubMed

Publication types