Artificial whole genome duplication in paleopolyploid sturgeons yields highest documented chromosome number in vertebrates
- PMID: 33184410
- PMCID: PMC7665173
- DOI: 10.1038/s41598-020-76680-4
Artificial whole genome duplication in paleopolyploid sturgeons yields highest documented chromosome number in vertebrates
Abstract
Critically endangered sturgeons, having undergone three whole genome duplication events, represent an exceptional example of ploidy plasticity in vertebrates. Three extant ploidy groups, combined with autopolyploidization, interspecific hybridization and the fertility of hybrids are important issues in sturgeon conservation and aquaculture. Here we demonstrate that the sturgeon genome can undergo numerous alterations of ploidy without severe physiological consequences, producing progeny with a range of ploidy levels and extremely high chromosome numbers. Artificial suppression of the first mitotic division alone, or in combination with suppression of the second meiotic division of functionally tetraploid zygotes (4n, C-value = 4.15) of Siberian sturgeon Acipenser baerii and Russian sturgeon A. gueldenstaedtii resulted in progeny of various ploidy levels-diploid/hexaploid (2n/6n) mosaics, hexaploid, octoploid juveniles (8n), and dodecaploid (12n) larvae. Counts between 477 to 520 chromosomes in octoploid juveniles of both sturgeons confirmed the modal chromosome numbers of parental species had been doubled. This exceeds the highest previously documented chromosome count among vertebrates 2n ~ 446 in the cyprinid fish Ptychobarbus dipogon.
Conflict of interest statement
The authors declare no competing interests.
Figures




Similar articles
-
Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii.BMC Genet. 2014 Jan 10;15:5. doi: 10.1186/1471-2156-15-5. BMC Genet. 2014. PMID: 24410899 Free PMC article.
-
The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity.Genet Sel Evol. 2016 Feb 11;48:12. doi: 10.1186/s12711-016-0194-0. Genet Sel Evol. 2016. PMID: 26867760 Free PMC article.
-
Ploidy Levels and Fitness-Related Traits in Purebreds and Hybrids Originating from Sterlet (Acipenser ruthenus) and Unusual Ploidy Levels of Siberian Sturgeon (A. baerii).Genes (Basel). 2020 Oct 2;11(10):1164. doi: 10.3390/genes11101164. Genes (Basel). 2020. PMID: 33023081 Free PMC article.
-
Evolutionary plasticity of acipenseriform genomes.Chromosoma. 2016 Sep;125(4):661-8. doi: 10.1007/s00412-016-0609-2. Epub 2016 Jul 14. Chromosoma. 2016. PMID: 27411693 Review.
-
Distant hybridization leads to different ploidy fishes.Sci China Life Sci. 2010 Apr;53(4):416-25. doi: 10.1007/s11427-010-0057-9. Epub 2010 May 7. Sci China Life Sci. 2010. PMID: 20596907 Review.
Cited by
-
Genomic and Epidemiological Investigations Reveal Chromosomal Integration of the Acipenserid Herpesvirus 3 Genome in Lake Sturgeon Acipenser fulvescens.Viruses. 2025 Apr 5;17(4):534. doi: 10.3390/v17040534. Viruses. 2025. PMID: 40284977 Free PMC article.
-
MiR-34b/c play a role in early sex differentiation of Amur sturgeon, Acipenser schrenckii.Front Zool. 2022 Sep 26;19(1):23. doi: 10.1186/s12983-022-00469-6. Front Zool. 2022. PMID: 36163040 Free PMC article.
-
Metabolomics in sturgeon research: a mini-review.Fish Physiol Biochem. 2024 Aug;50(4):1895-1910. doi: 10.1007/s10695-024-01377-8. Epub 2024 Jul 9. Fish Physiol Biochem. 2024. PMID: 38980504 Free PMC article. Review.
-
Natural repeated backcrosses lead to triploidy and tetraploidy in parthenogenetic butterfly lizards (Leiolepis: Agamidae).Sci Rep. 2025 Jan 24;15(1):3094. doi: 10.1038/s41598-024-83300-y. Sci Rep. 2025. PMID: 39856096 Free PMC article.
-
Unidirectional hybridization between American paddlefish Polyodon spathula (Walbaum, 1792) and sterlet Acipenser ruthenus (Linnaeus, 1758).PeerJ. 2024 Jan 19;12:e16717. doi: 10.7717/peerj.16717. eCollection 2024. PeerJ. 2024. PMID: 38259665 Free PMC article.
References
-
- Mable BK, Alexandrou MA, Taylor MI. Genome duplication in amphibians and fish: an extended synthesis. J. Zool. 2011;284:151–182. doi: 10.1111/j.1469-7998.2011.00829.x. - DOI
-
- Ohno, S. Evolution by gene duplication. (Springer, New York, 1970).
-
- Lynch, M. Genomics. Gene Duplication and Evolution. Science (New York, N.Y.) vol. 297 https://pubmed.ncbi.nlm.nih.gov/12169715/ (2002). - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources