Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Nov 12;3(1):667.
doi: 10.1038/s42003-020-01391-5.

Tet2 at the interface between cancer and immunity

Affiliations
Review

Tet2 at the interface between cancer and immunity

Shuai Jiang. Commun Biol. .

Abstract

Keeping a balance between DNA methylation and demethylation balance is central for mammalian development and cell function, particularly in the hematopoietic system. In various mammalian cells, Tet methylcytosine dioxygenase 2 (Tet2) catalyzes oxygen transfer to a methyl group of 5-methylcytosine (5mC), yielding 5-hydroxymethylcytocine (5hmC). Tet2 mutations drive tumorigenesis in several blood cancers as well as in solid cancers. Here I discuss recent studies that elucidate mechanisms and biological consequences of Tet2 dysregulation in blood cancers. I focus on recent findings concerning Tet2 involvement in lymphoid and myeloid cell development and its functional roles, which may be associated with tumorigenesis. I also discuss how Tet2 activities are modulated by microRNAs, metabolites, and other interactors, including vitamin C and 2-hydroxyglutarate (2-HG), and review the clinical relevance and potential therapeutic applications of Tet2 targeting. Finally, I propose key unanswered hypotheses regarding Tet2 in the cancer-immunity cycle.

PubMed Disclaimer

Conflict of interest statement

The author declares no competing interests. S.J. is an Editorial Board Member for Communications Biology, but was neither involved in the editorial review of nor the decision to publish this article.

Figures

Fig. 1
Fig. 1. Tet2 in the cancer-immunity crosstalk.
Tet2 loss causes an accumulation of 5mC, which promotes B-cell development and B-cell function. Tet2 loss also promotes CD4+ T-cell differentiation and M1 macrophage responses, which can modulate cancer cell activities. In contrast, cancer cells that carry Tet2 mutations counteract positive immune-cell responses, including T-cell and macrophages.
Fig. 2
Fig. 2. Potential therapeutic strategies related to cancer-immunity, based on interactors, specifically targeting Tet2 activities in immune and cancer cells.
The Tet2 activities might be enhanced by vitamin C and hypoxia treatment through HIF-1a. The Tet2 activities might be halted by blocking a-KG accumulation, selective OGT inhibition, selective IDH2 inhibition, using anti-Fe2+ agent, or directly suppressed by microRNAs (e.g., Let-7 and miR-22), Tet2 shRNA lentivirus, and Crispr/cas9 targeting in cancer and immune cells.

Similar articles

Cited by

References

    1. Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 2017;18:517–534. doi: 10.1038/nrg.2017.33. - DOI - PubMed
    1. Lorsbach RB, et al. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23) Leukemia. 2003;17:637–641. doi: 10.1038/sj.leu.2402834. - DOI - PubMed
    1. Koivunen P, Laukka T. The TET enzymes. Cell. Mol. Life Sci. 2018;75:1339–1348. doi: 10.1007/s00018-017-2721-8. - DOI - PMC - PubMed
    1. Ko M, et al. TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunol. Rev. 2015;263:6–21. doi: 10.1111/imr.12239. - DOI - PMC - PubMed
    1. Pan F, Weeks O, Yang F-C, Xu M. The TET2 interactors and their links to hematological malignancies. IUBMB Life. 2015;67:438–445. doi: 10.1002/iub.1389. - DOI - PMC - PubMed

Publication types