Phasic Activation of Dorsal Raphe Serotonergic Neurons Increases Pupil Size
- PMID: 33186549
- PMCID: PMC7808753
- DOI: 10.1016/j.cub.2020.09.090
Phasic Activation of Dorsal Raphe Serotonergic Neurons Increases Pupil Size
Abstract
Transient variations in pupil size (PS) under constant luminance are coupled to rapid changes in arousal state,1-3 which have been interpreted as vigilance,4 salience,5 or a surprise signal.6-8 Neural control of such fluctuations presumably involves multiple brain regions5,9-11 and neuromodulatory systems,3,12,13 but it is often associated with phasic activity of the noradrenergic system.9,12,14,15 Serotonin (5-HT), a neuromodulator also implicated in aspects of arousal16 such as sleep-wake transitions,17 motivational state regulation,18 and signaling of unexpected events,19 seems to affect PS,20-24 but these effects have not been investigated in detail. Here we show that phasic 5-HT neuron stimulation causes transient PS changes. We used optogenetic activation of 5-HT neurons in the dorsal raphe nucleus (DRN) of head-fixed mice performing a foraging task. 5-HT-driven modulations of PS were maintained throughout the photostimulation period and sustained for a few seconds after the end of stimulation. We found no evidence that the increase in PS with activation of 5-HT neurons resulted from interactions of photostimulation with behavioral variables, such as locomotion or licking. Furthermore, we observed that the effect of 5-HT on PS depended on the level of environmental uncertainty, consistent with the idea that 5-HT could report a surprise signal.19 These results advance our understanding of the neuromodulatory control of PS, revealing a tight relationship between phasic activation of 5-HT neurons and changes in PS.
Keywords: arousal; behavioral states; dorsal raphe; foraging; mouse; neuromodulation; optogenetics; pupil; serotonin; uncertainty.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Interests The authors declare no competing interests.
Figures
Comment in
-
Pupillometry: Arousal State or State of Mind?Curr Biol. 2021 Jan 11;31(1):R32-R34. doi: 10.1016/j.cub.2020.11.001. Curr Biol. 2021. PMID: 33434486
References
-
- Wang C.-A., Munoz D.P. A circuit for pupil orienting responses: implications for cognitive modulation of pupil size. Curr. Opin. Neurobiol. 2015;33:134–140. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
